Skip to main content
Log in

The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Diffusion Problems

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, a fully discrete stability analysis is carried out for the direct discontinuous Galerkin (DDG) methods coupled with Runge-Kutta-type implicit-explicit time marching, for solving one-dimensional linear convection-diffusion problems. In the spatial discretization, both the original DDG methods and the refined DDG methods with interface corrections are considered. In the time discretization, the convection term is treated explicitly and the diffusion term implicitly. By the energy method, we show that the corresponding fully discrete schemes are unconditionally stable, in the sense that the time-step \(\tau\) is only required to be upper bounded by a constant which is independent of the mesh size h. Optimal error estimate is also obtained by the aid of a special global projection. Numerical experiments are given to verify the stability and accuracy of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  3. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  Google Scholar 

  5. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)

    Article  MathSciNet  Google Scholar 

  6. Calvo, M.P., de Frutos, J., Novo, J.: Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)

    Article  MathSciNet  Google Scholar 

  7. Cao, W., Liu, H., Zhang, Z.: Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Partial Differ. Equ. 33, 290–317 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Huang, H., Yan, J.: Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangle mesh. J. Comput. Phys. 308, 198–217 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cheng, J., Yang, X., Liu, X., Liu, T., Luo, H.: A direct discontinuous Galerkin method for the compressible Navier-Stokes equation on arbitrary grids. J. Comput. Phys. 327, 484–502 (2016)

    Article  MathSciNet  Google Scholar 

  10. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  Google Scholar 

  14. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  16. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  17. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  Google Scholar 

  18. Fu, G., Shu, C.-W.: Analysis of an embedded discontinuous Galerkin method with implicit-explicit time-marching for convection-diffusion problems. Int. J. Numer. Anal. Model. 347, 305–327 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Liu, H.: Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations. Math. Comput. 84, 2263–2295 (2015)

    Article  MathSciNet  Google Scholar 

  20. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)

    Article  MathSciNet  Google Scholar 

  21. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    Article  MathSciNet  Google Scholar 

  22. Liu, H., Yu, H.: Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker-Planck equations. SIAM J. Sci. Comput. 36, A2296–A2325 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ortleb, S.: \(L^2\)-stability analysis of IMEX-(\(\sigma, \mu\))DG schemes for linear advection-diffusion equations. Appl. Numer. Math. 147, 43–65 (2020)

    Article  MathSciNet  Google Scholar 

  24. Reed, W., Hill, T.: Triangular mesh methods for the neutrontransport equation, La-ur-73-479, Los Alamos Scientific Laboratory, USA (1973)

  25. Vidden, C., Yan, J.: Direct discontinuous Galerkin method for diffusion problems with symmetric structure. J. Comput. Math. 31, 638–662 (2013)

  26. Wang, H.J., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    Article  MathSciNet  Google Scholar 

  27. Wang, H.J., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Wang, H. J., Wang, S. P., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems. ESAIM: M2AN 50, 1083–1105 (2016)

  29. Yan, J.: A new nonsymmetric discontinuous Galerkin method for time dependent convection diffusion equations. J. Sci. Comput. 54, 663–683 (2013)

    Article  MathSciNet  Google Scholar 

  30. Yi, N., Huang, Y., Liu, H.: A direct discontinuous Galerkin method for the generalized Korteweg-de Vries equation: energy conservation and boundary effect. J. Comput. Phys. 242, 351–366 (2013)

    Article  MathSciNet  Google Scholar 

  31. Zhang, F., Cheng, J., Liu, T.: A direct discontinuous Galerkin method for the incompressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys. 380, 269–294 (2019)

    Article  MathSciNet  Google Scholar 

  32. Zhang, M., Shu, C.-W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413 (2003)

    Article  MathSciNet  Google Scholar 

  33. Zhang, M., Yan, J.: Fourier type error analysis of the direct discontinuous Galerkin method and its variations for diffusion equations. J. Sci. Comput. 52, 638–655 (2012)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Q., Shu, C.-W.: Error estimates to smooth solution of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM. J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  Google Scholar 

  35. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM. J. Numer. Anal. 48, 1038–1063 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijin Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Haijin Wang: Research sponsored by the NSFC grant 11871428 and the Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011.

Qiang Zhang: Research supported by the NSFC grant 11671199.

Appendix A

Appendix A

Proof of Lemma 5

We only show the proof for the original DDG operator. The proof for the refined DDG operator is the similar. By the definition of \(\mathcal {D}(\cdot ,\cdot )\) and \(\widehat{u_x}\) (5), we get

$$\begin{aligned} \mathcal {D}(u,v)-\mathcal {D}(v,u)=&\,d\sum _{j=1}^N\left[ \{u_x\}_{j+\frac{1}{2}} + \sum _{m=1}^{\lfloor k/2\rfloor } \beta _m {\tilde{h}_j}^{2m-1} [\partial ^{2m}_x u]_{j+\frac{1}{2}} \right] [v]_{j+\frac{1}{2}} \\&\, -d\sum _{j=1}^N\left[ \{v_x\}_{j+\frac{1}{2}} + \sum _{m=1}^{\lfloor k/2\rfloor } \beta _m {\tilde{h}_j}^{2m-1} [\partial ^{2m}_x v]_{j+\frac{1}{2}} \right] [u]_{j+\frac{1}{2}}. \end{aligned}$$

Using the Cauchy-Schwarz inequality and the Young’s inequality, we have

$$\begin{aligned} |\mathcal {D}(u,v)-\mathcal {D}(v,u)|\leqslant&\, d\varepsilon (h^{-1}|\![u]\!|^2+h^{-1}|\![v]\!|^2)\\&\,+d\frac{h}{4\varepsilon } \sum _{j=1}^N\left[ \{u_x\}_{j+\frac{1}{2}} + \sum _{m=1}^{\lfloor k/2\rfloor } \beta _m {\tilde{h}_j}^{2m-1} [\partial ^{2m}_x u]_{j+\frac{1}{2}} \right] ^2\\&\, + d\frac{h}{4\varepsilon } \sum _{j=1}^N\left[ \{v_x\}_{j+\frac{1}{2}} + \sum _{m=1}^{\lfloor k/2\rfloor } \beta _m {\tilde{h}_j}^{2m-1} [\partial ^{2m}_x v]_{j+\frac{1}{2}} \right] ^2 \end{aligned}$$

for arbitrary positive \(\varepsilon\). By the aid of the inverse inequalities (11) and (12), we get

$$\begin{aligned} |\mathcal {D}(u,v)-\mathcal {D}(v,u)|\leqslant&\, d\varepsilon (h^{-1}|\![u]\!|^2+h^{-1}|\![v]\!|^2) +d \mu \frac{\lfloor k/2\rfloor +1}{8\varepsilon }(\Vert u_x\Vert ^2+\Vert v_x\Vert ^2)\\&\,+d\mu \frac{\lfloor k/2\rfloor +1}{2\varepsilon } \sum _{m=1}^{\lfloor k/2\rfloor } \beta _m^2 h^{4m-2} (\Vert \partial ^{2m}_x u\Vert ^2+\Vert \partial ^{2m}_x v\Vert ^2)\\ \leqslant&\,d\varepsilon (h^{-1}|\![u]\!|^2+h^{-1}|\![v]\!|^2)\\&\,+ \frac{\lfloor k/2\rfloor +1}{8\varepsilon }d\mu \left[ 1+ 4\mu ^2\sum _{m=1}^{\lfloor k/2\rfloor } \beta _m^2 \right] (\Vert u_x\Vert ^2+\Vert v_x\Vert ^2). \end{aligned}$$

Thus, by taking \(\varepsilon =\sqrt{\frac{\lfloor k/2\rfloor +1}{8}\left[ 1+ 4\mu ^2\sum\limits_{m=1}^{\lfloor k/2\rfloor } \beta _m^2 \right] }=C_{\mu }\), we get the desired result.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, Q. The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Diffusion Problems. Commun. Appl. Math. Comput. 4, 271–292 (2022). https://doi.org/10.1007/s42967-020-00114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-020-00114-1

Keywords

Mathematics Subject Classification

Navigation