Skip to main content

Advertisement

Log in

Effect of Viscoelastic Material in Hot Mix Asphalt Rutting Performance Correlation Using Different Wheel-Tracking Test

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Rutting resistance is an important consideration for paving asphalt mixes. The cause of rutting is a shear strain in the asphalt pavement structure. Here, the rutting behavior of asphalt pavements was evaluated through laboratory simulations using the Hamburg Wheel-Tracking Test (HWTT), UK Wheel-Tracking Test (UKWTT), and Scaled Accelerated Load Simulator (SALS) test. The correlation between the three simulation tests was analyzed to determine the conversion factor (CF). Two parameters of temperature and speed of simulation testing were evaluated in this study. Subsequently, the representative frequency and dynamic modulus were calculated with consideration of viscoelasticity and time–temperature superposition. Using logical analysis, CF between the three simulation tests was validated. The results showed that the full-scale test yielded the highest stiffness modulus of 4,015 MPa, and the UKWTT yielded the lowest stiffness modulus of 1,857 MPa at 60 °C. From the HWTT results, it was found that the impact of moisture damage at 40 °C is not substantial compared to that at 50 °C. The conversion factor of HWTT at 40 °C, HWTT at 50 °C and UKWTT at 60 °C to SALS were 0.92, 0.74, and 0.63, respectively. Furthermore, the similar rutting performance among SALS, HWTT at 40 °C in dry and wet conditions, and HWTT at 50 °C in dry condition can be observed when the CF is applied. Lastly, the effectiveness of the conversion factor is diminished with increasing rutting damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AASHTO:

American Association of State Highway and Transportation Officials

AC:

Asphalt concrete

AI MS-2:

Asphalt institute marshall standard type 2

APA:

Asphalt pavement analyzer

CF:

Conversion factor

CS:

Creep slope

CWTT:

Cooper wheel tracking test

DOTs:

Department of transportations

FRT:

French rutting tester

HD:

Heavy duty

HMA:

Hot mix asphalt

HWTT:

Hamburg wheel tracking test

HVS:

Heavy vehicle simulator

LL:

Laboratory mixed, laboratory-compacted

LVDT:

Linear variable differential transformer

MMLS3:

Third-scale model mobile load simulator

PF:

Plant-mixed, field-compacted

PG:

Performance grade

PL:

Plant-mixed, laboratory-compacted

PRTT:

Ply rating tube type

RLAT:

Repeated load axial tester

SALS:

Scaled accelerated load simulator

SIP:

Stripping inflection point

SS:

Stripping slope

TCI:

Total compaction initial

TD:

Total rut depth

UKWRT:

UK wheel rut tester

UKWTT:

UK wheel tracking test

WTT:

Wheel tracking test

\(a\) :

Half-length of tire contact area (m)

aT :

Time temperature shift factor

α:

Span of the logarithm of the dynamic modulus

\({\alpha}\left({T}\right)\) :

Effect of AC temperature (T, in °C) in x direction

b:

Half-width of tire contact area (m)

\(\beta \left(\text{T}\right)\) :

Effect of AC temperature in y and z directions

δ:

Minimum logarithm of the dynamic modulus

\(\left|{E}^{*}\right|\) :

Dynamic modulus

\({E}_{z-F}\) :

Modulus stiffness of the full-scale pavement scenario

\({E}_{z-S}\) :

Modulus stiffness of the SALS pavement scenario

f:

Loading frequency in Hz

\({f}_{i}\) :

Frequency in i-th direction (Hz)

fr :

Reduced frequency in Hz

\({f}_{z-F}\) :

Representative loading frequency of the full-scale pavement scenario

\({f}_{z-S}\) :

Representative loading frequency of the SALS pavement scenario

Gmm :

Theoretical maximum specific gravity

γ :

Shape parameters

η:

Shape parameters

\({T}_{F}\) :

Pavement service temperature

z:

Depth of AC layer (m)

References

  1. Y. Huang, Evaluating Pavement Response and Performance with Different Simulative Tests. Doctoral Dissertation, Virginia Polytechnic Institute and State University, 2017. http://hdl.handle.net/10919/78294.

  2. L.F. Walubita, S. Lee, J. Zhang, A.N. Faruk, Nguyen, ST and Scullion, T. HMA Shear Resistance, Permanent Deformation, and Rutting Tests for Texas Mixes: Year-1 Report. Technical Report 0–6744–1. Texas A&M University System, College Station, TX, USA, 2013.

  3. N. Gibson, X. Qi, A. Shenoy, G. Al-Khateeb, M.E. Kutay, A. Andriescu, K. Stuart, J. Youthcheff, T. Harman. Performance Testing for Superpave and Structural Validation, 2012. http://trid.trb.org/view.aspx?id=1224268.

  4. S. Im. Characterization of Viscoelastic and Fracture Properties of Asphaltic Materials in Multiple Lenght Scales, 2012. http://digitalcommons.unl.edu/civilengdiss/46.

  5. Gabet, T., Di Benedetto, H., Perraton, D., De Visscher, J., Gallet, T., Bańkowski, W., Olard, F., Grenfell, J., Bodin, D., & Sauzéat, C. (2011). French wheel tracking round robin test on a polymer modified bitumen mixture: RILEM TC 206-ATB, TG3: mechanical testing of mixtures. Materials and Structures Construction 44, 1031–1046. https://doi.org/10.1617/s11527-011-9733-x

    Article  Google Scholar 

  6. Wang, H., Fan, Z., & Zhang, J. (2016). Development of a full-depth wheel tracking test for asphalt pavement structure: methods and performance evaluation. Advances in Materials Science and Engineering, 2016, 1–8. https://doi.org/10.1155/2016/1737013

    Article  Google Scholar 

  7. Walubita, L. F., Fuentes, L., Prakoso, A., Pianeta, L. M. R., Komba, J. J., & Naik, B. (2020). Correlating the HWTT laboratory test data to field rutting performance of in-service highway sections. J. Constr. Build. Mater., 236, 117552

    Article  Google Scholar 

  8. Rushing, J. F., Little, D. N., & Garg, N. (2012). Asphalt pavement analyzer used to assess rutting susceptibility of hot-mix asphalt designed for high tire pressure aircraft. Journal of the Transportation Research Board, 2296, 97–105. https://doi.org/10.3141/2296-10

    Article  Google Scholar 

  9. Suh, Y. C., & Cho, N. H. (2014). Development of a rutting performance model for asphalt concrete pavement based on test road and accelerated pavement test data. KSCE Journal of Civil Engineering 18, 165–171

    Article  Google Scholar 

  10. Lee, J., Kim, Y. R., & Lee, J. (2015). Rutting performance evaluation of asphalt mix with different types of geosynthetics using MMLS3. International Journal of Pavement Engineering, 16, 894–905. https://doi.org/10.1080/10298436.2014.972916

    Article  Google Scholar 

  11. Khan, S., Nagabhushana, M. N., Tiwari, D., & Jain, P. K. (2013). Rutting in flexible pavement: an approach of evaluation with accelerated pavement testing facility. Procedia-Social and Behavioral Sciences, 104, 149–157. https://doi.org/10.1016/j.sbspro.2013.11.107

    Article  Google Scholar 

  12. Chaturabong, P., & Bahia, H. U. (2017). Mechanisms of asphalt mixture rutting in the dry Hamburg wheel tracking test and the potential to be alternative test in measuring rutting resistance. Construction and Building Materials, 146, 175–182. https://doi.org/10.1016/j.conbuildmat.2017.04.080

    Article  Google Scholar 

  13. Wang, H., Tan, H., Qu, T., & Zhang, J. (2017). Effects of test conditions on APA rutting and prediction modeling for asphalt mixtures. Advances in Materials Science and Engineering, 2017, 1–12. https://doi.org/10.1155/2017/2062758

    Article  Google Scholar 

  14. Radhakrishnan, V., Chowdari, G. S., Reddy, K. S., & Chattaraj, R. (2017). Evaluation of wheel tracking and field rutting susceptibility of dense bituminous mixes. Road Materials and Pavement Design https://doi.org/10.1080/14680629.2017.1374998

    Article  Google Scholar 

  15. Al-Khateeb, G. G., Khedaywi, T. S., Obaidat, T. I. A., & Najib, A. M. (2013). Laboratory study for comparing rutting performance of limestone and basalt Superpave asphalt mixtures. Journal of Materials in Civil Engineering, 25, 21–29. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000519

    Article  Google Scholar 

  16. Walubita, L. F., Lee, S., Faruk, A. N. M., Zhang, J., Hu, X., & Lee, S. I. (2016). The Hamburg rutting test-effects of HMA sample sitting time and test temperature variation. Construction and Building Materials, 108, 22–28. https://doi.org/10.1016/j.conbuildmat.2016.01.031

    Article  Google Scholar 

  17. Y. Yildirim, K.H. Stokoe II. Analysis of Hamburg Wheel Tracking Device Results in Relation to Field Performance, FHWA/TX-06/0–4185–5. Texas Dep. Transp. (2006) 1–90.

  18. Walubita, L. F., Fuentes, L., Lee, S. I., Dawd, I., & Mahmoud, E. (2019). Comparative evaluation of five HMA rutting-related laboratory test methods relative to field performance data: DM, FN, RLPD, SPST, and HWTT. Construction and Building Materials. 215, 737–753. https://doi.org/10.1016/j.conbuildmat.2019.04.250

    Article  Google Scholar 

  19. L.F. Walubita, T. Nyamuhokya, S.I. Lee, A. Prakoso. Implementation of The HMA Shear Test for Routine Mix-Design and Screening: Technical Report. Texas A&M Transportation Institute, Texas (2019). URL: http://tti.tamu.edu/documents/5-6744-01-R1.pdf.

  20. Walubita, L. F., Lee, S., Faruk, A. N. M., Fuentes, L., Prakoso, A., Dessouky, S., Naik, B., & Nyamuhokya, T. (2019). Using the simple punching shear test (SPST) for evaluating the HMA shear properties and predicting field rutting performance. Construction and Building Materials, 224, 920–929. https://doi.org/10.1016/j.conbuildmat.2019.07.133

    Article  Google Scholar 

  21. Walubita, L. F., Lee, S., Faruk, A. N. M., Zhang, J., Komba, J. J., & Alrashydah, E. I. (2019). The Hamburg rutting test (HWTT) alternative data analysis methods and HMA screening criteria. International Journal of Pavement Research and Technology https://doi.org/10.1007/s42947-019-0014-3

    Article  Google Scholar 

  22. Walubita, L. F., Fuentes, L., Prakoso, A., Pianeta, L. M. R., Komba, J. J., & Naik, B. (2020). Correlating the HWTT laboratory test data to field rutting performance of in-service highway sections. Construction and Building Materials, 236, 117552. https://doi.org/10.1016/j.conbuildmat.2019.117552

    Article  Google Scholar 

  23. Walubita, L. F., Nyamuhokya, T., Naik, B., Holleran, I., & Dessouky, S. (2018). Sensitivity analysis and validation of the simple punching shear test (SPST) for screening HMA mixes. Construction and Building Materials, 169, 205–214. https://doi.org/10.1016/j.conbuildmat.2018.02.198

    Article  Google Scholar 

  24. S. Schram, R.C. Williams. Evaluation of Bias in the Hamburg Wheel Tracking Device, Final Report. Iowa Dep. Transp. RB00–010 (2013).

  25. D. General. Annual Report Directorate General of Highways, MOTC Protecting the Happiness of a Safe Journey Home, (2012).

  26. Hussan, S., Kamal, M. A., Hafeez, I., & Ahmad, N. (2017). Comparing and correlating various laboratory rutting performance tests. International Journal of Pavement Engineering, 8436, 1–12. https://doi.org/10.1080/10298436.2017.1402591

    Article  Google Scholar 

  27. Dai, X., Jia, Y., Wang, S., & Gao, Y. (2020). Evaluation of the rutting performance of the field specimen using the Hamburg wheel tracking test and dynamic modulus test Hindawi. Advances in Civil Engineerin 15, 2020. https://doi.org/10.1155/2020/9525179

    Article  Google Scholar 

  28. Moreo, F., & Zerbino, R. (2015). Wheel Tracking Test (WTT) Conducted Under Different Standards, Study and Correlation of Test Parameters and Limits. Materials and Structures Civil Engineering https://doi.org/10.1617/s11527-014-0460-y

    Article  Google Scholar 

  29. Alkuime, H., & Kassem, E. (2020). Comprehensive evaluation of wheel-tracking rutting performance assessment tests. International Journal of Pavement Research and Technology, 13, 334–347

    Article  Google Scholar 

  30. Lv, Q., Huang, W., Sadek, H., Xiao, F., & Yan, C. (2019). Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg wheel tracking device test and multiple stress creep recovery test. Construction and Building Materials, 206, 62–70. https://doi.org/10.1016/j.conbuildmat.2019.02.015

    Article  Google Scholar 

  31. H. Alimohammadi, J. Zheng, A. Buss, V. R. Schaefer. Rutting Performance Evaluation of Hot Mix Asphalt and Warm Mix Asphalt Mixtures by Using Dynamic Modulus, Hamburg Wheel Tracking Tests, and Viscoleastic Finite Element Simulations. International Conference on Transportation and Development 2020, ASCE (2020). Doi: https://doi.org/10.1061/9780784483183.009.

  32. Maghool, F., Senanayake, M., Arulrajah, A., & Horpibulsuk, S. (2021). Permanent deformation and rutting resistance of demolition waste triple blends in unbound pavement applications. Material MDPI, 14, 798. https://doi.org/10.3390/ma14040798

    Article  Google Scholar 

  33. Yang, S. H., Huang, C. W., Sun, Y. N., & Susanto, H. A. (2018). The development of the scaled accelerated loading simulator facility and transfer functions to the full-scale pavement using theory of similitude by finite element analysis. International Journal of Pavement Research and Technology S1996–6814, 1–56. https://doi.org/10.1016/j.ijprt.2018.03.004

    Article  Google Scholar 

  34. M. Buncher, M. Anderson. MS-2 7 th Edition Asphalt Mix Design Methods, 2014.

  35. ASTM D 3497–79. Standard Test Method for Dynamic Modulus of Asphalt Mixtures, Am. Soc. Test. Mater. 79 (2003) 1–3.

  36. AASHTO T324–17. Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)Mixtures, 95 (2017) 1–9.

  37. British Standards 598–110. Methods of test for The Determination of wheel-Tracking Rate and Depth, (1998).

  38. Losa, M., & Natale, A. D. (2012). Evaluation of representative loading frequency for linear elastic analysis of asphalt pavements. Journal of the Transportation Research Board, 2305, 150–161. https://doi.org/10.3141/2305-16

    Article  Google Scholar 

  39. Mohammad, L. N., Elseif, M. A., Cooper, S. B., III., Hughes, C. S., Button, J. W., & Dukatz, E. L., Jr. (2016). Comparing the volumetric and mechanical properties of laboratory and field specimens of asphalt. Concrete. https://doi.org/10.17226/23475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hsien Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susanto, H.A., Yang, SH., Kao, CT. et al. Effect of Viscoelastic Material in Hot Mix Asphalt Rutting Performance Correlation Using Different Wheel-Tracking Test. Int. J. Pavement Res. Technol. 15, 693–705 (2022). https://doi.org/10.1007/s42947-021-00046-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00046-w

Keywords

Navigation