Skip to main content

Advertisement

Log in

Prediction of Compressive Strength of General-Use Concrete Mixes with Recycled Concrete Aggregate

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

This paper presents the mechanical behaviour of concrete mixes made with recycled aggregate by replacing the natural aggregate with crushed concrete from pavement demolition. The purpose of this study was to determine the feasibility of using recycled aggregate from pavement demolition to make new concrete for pavement applications. Considering a control mix without recycled aggregate (RCA0) designed for a compressive strength of 34 MPa, two types of concrete mixes with 50% (RCA50) and 100% (RCA100) replacement percentage of natural coarse aggregate by recycled aggregate were made. The resulting concrete specimens were tested at three different curing ages, 7, 14, and 28 days. The results of this study showed that the compressive and flexural strengths decreased for all two mixes as the recycled aggregate content increased, while the density was slightly affected. A new model based on multiple linear regression analysis of the data from this study and other 14 studies from the literature was developed. The model can be used to predict the compressive strength of general-use concrete mixes with recycled aggregate (20–40 MPa) considering both the recycled aggregate content and the curing age of concrete. A good correlation was found between the compressive strength and the two parameters investigated. Given the predictions of this model, it is recommended not to use more than 30% recycled concrete aggregate in the production of new concrete in order not to affect its strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. UNEP, Common Carbon Metric: Protocol for Measuring Energy Use and Reporting Greenhouse Gas Emissions from Building Operations, 2010. https://europa.eu/capacity4dev/unep/document/common-carbon-metric-buildings. Accessed 12 Mar 2018.

  2. Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012

    Article  Google Scholar 

  3. de Brito, J., & Saikia, N. (2013). Recycled Aggregate in Concrete. Springer London. https://doi.org/10.1007/978-1-4471-4540-0

    Book  Google Scholar 

  4. Silva, R. V., de Brito, J., & Dhir, R. K. (2017). Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. Journal of Cleaner Production, 143, 598–614. https://doi.org/10.1016/j.jclepro.2016.12.070

    Article  Google Scholar 

  5. Shi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2016). Performance enhancement of recycled concrete aggregate—A review. Journal of Cleaner Production, 112, 466–472. https://doi.org/10.1016/j.jclepro.2015.08.057

    Article  Google Scholar 

  6. Lye, C.-Q., Dhir, R. K., & Ghataora, G. S. (2016). Shrinkage of recycled aggregate concrete. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 169, 867–891. https://doi.org/10.1680/jstbu.15.00138

    Article  Google Scholar 

  7. EPA, OSWER Innovation Project Success Story: Deconstruction, 2009. https://www.epa.gov/sites/production/files/2016-03/documents/innovation_project_success_story_deconstruct.pdf. Accessed 12 Mar 2018.

  8. S. Vadera, P. Woolas, C. Flint, I. Pearson, M. Hodge, W. Jordan, M. Davies, Strategy for sustainable construction, 2008. http://webarchive.nationalarchives.gov.uk/+/http:/www.bis.gov.uk/files/file46535.pdf. Accessed 12 Mar 2018.

  9. BRE Environmental Consultancy, Sustainable Construction - Simple ways to make it happen, 2008. https://www.bre.co.uk/filelibrary/rpts/sustainable_construction_simpleways_to_make_it_happen.pd . Accessed 12 Mar 2018.

  10. Camacol Bogotá y Cundinamarca, Acuerdo de Construcción Sostenible, 2016. https://ww2.camacolcundinamarca.co/images/Camacol/documentos-interes/ACUERDO-construccion-sostenible-2016.pdf. Accessed 12 Mar 2018.

  11. Secretaria Distrital de Ambiente, Resolución No. 01115 - Por medio de la cual se adoptan los lineamientos técnico- ambientales para las actividades de aprovechamiento y tratamiento de los residuos de construcción y demolición en el distrito capital, 2012. http://www.ambientebogota.gov.co/en/c/document_library/get_file?uuid=fb032331-8198-4f1b-8461-b6f398c6df40&groupId=10157. Accessed 12 Mar 2018.

  12. Kisku, N., Joshi, H., Ansari, M., Panda, S. K., Nayak, S., & Dutta, S. C. (2017). A critical review and assessment for usage of recycled aggregate as sustainable construction material. Construction and Building Materials, 131, 721–740. https://doi.org/10.1016/j.conbuildmat.2016.11.029

    Article  Google Scholar 

  13. Vishnu, T. B., & Singh, K. L. (2020). A study on the suitability of solid waste materials in pavement construction: A review. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-020-0273-z

    Article  Google Scholar 

  14. Barritt, J. (2016). An overview on recycling and waste in construction. Proceedings of the Institution of Civil Engineers-Construction Materials., 169, 49–53. https://doi.org/10.1680/coma.15.00006

    Article  Google Scholar 

  15. Rodríguez-Robles, D., García-González, J., Juan-Valdés, A., Morán-del Pozo, J. M., & Guerra-Romero, M. I. (2015). Effect of mixed recycled aggregates on mechanical properties of recycled concrete. Magazine of Concrete Research, 67, 247–256. https://doi.org/10.1680/macr.14.00217

    Article  Google Scholar 

  16. McGinnis, M. J., Davis, M., de la Rosa, A., Weldon, B. D., & Kurama, Y. C. (2017). Quantified sustainability of recycled concrete aggregates. Magazine of Concrete Research, 69, 1203–1211. https://doi.org/10.1680/jmacr.16.00338

    Article  Google Scholar 

  17. Ho, N. Y., Lee, Y. P. K., Lim, W. F., Chew, K. C., Low, G. L., & Ting, S. K. (2015). Evaluation of RCA concrete for the construction of Samwoh Eco-Green Building. Magazine of Concrete Research, 67, 633–644. https://doi.org/10.1680/macr.14.00212

    Article  Google Scholar 

  18. Lima, A. S., & Cabral, A. E. B. (2013). Caracterização e classificação dos resíduos de construção civil da cidade de Fortaleza (CE). Engenharia Sanitária e Ambiental, 18, 169–176. https://doi.org/10.1590/S1413-41522013000200009

    Article  Google Scholar 

  19. del Río Merino, M., Izquierdo Gracia, P., & Weis Azevedo, I. S. (2010). Sustainable construction: construction and demolition waste reconsidered. Waste Management & Research, 28, 118–129. https://doi.org/10.1177/0734242X09103841

    Article  Google Scholar 

  20. Jindal, A., & G.D. Ransinchung R.N. . (2018). Behavioural study of pavement quality concrete containing construction, industrial and agricultural wastes. International Journal of Pavement Research Technol., 11, 488–501. https://doi.org/10.1016/j.ijprt.2018.03.007

    Article  Google Scholar 

  21. Pepe, M. (2015). A conceptual model for designing recycled aggregate concrete for structural applications, springer international publishing. Cham. https://doi.org/10.1007/978-3-319-26473-8

    Article  Google Scholar 

  22. Thomas, C., Setién, J., & Polanco, J. A. (2016). Structural recycled aggregate concrete made with precast wastes. Construction and Building Materials, 114, 536–546. https://doi.org/10.1016/j.conbuildmat.2016.03.203

    Article  Google Scholar 

  23. Letelier, V., Tarela, E., Osses, R., Cárdenas, J. P., & Moriconi, G. (2017). Mechanical properties of concrete with recycled aggregates and waste glass. Structural Concrete, 18, 40–53. https://doi.org/10.1002/suco.201500143

    Article  Google Scholar 

  24. Cheng, A., Hsu, H.-M., Chao, S.-J., & Lin, K.-L. (2011). Experimental study on properties of pervious concrete made with recycled aggregate. Int. J. Pavement Res. Technol., 4, 104–110

    Google Scholar 

  25. Poon, C. S., Shui, Z. H., Lam, L., Fok, H., & Kou, S. C. (2004). Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 34, 31–36. https://doi.org/10.1016/S0008-8846(03)00186-8

    Article  Google Scholar 

  26. Silva, R. V., de Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: A review. European Journal of Environmental and Civil Engineering, 19, 825–849. https://doi.org/10.1080/19648189.2014.974831

    Article  Google Scholar 

  27. Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

    Article  Google Scholar 

  28. de Brito, J., & Alves, F. (2010). Concrete with recycled aggregates: the Portuguese experimental research. Materials and Structures, 43, 35–51. https://doi.org/10.1617/s11527-010-9595-7

    Article  Google Scholar 

  29. Corinaldesi, V., & Moriconi, G. (2010). Recycling of rubble from building demolition for low-shrinkage concretes. Waste Management, 30, 655–659. https://doi.org/10.1016/j.wasman.2009.11.026

    Article  Google Scholar 

  30. Lovato, P. S., Possan, E., Molin, D. C. C. D., Masuero, Â. B., & Ribeiro, J. L. D. (2012). Modeling of mechanical properties and durability of recycled aggregate concretes. Construction and Building Materials, 26, 437–447. https://doi.org/10.1016/j.conbuildmat.2011.06.043

    Article  Google Scholar 

  31. Corbu, O., Puskás, A., Szilágyi, H., & Baeră, C. (2014). C16/20 concrete strength class design with recycled aggregates. Journal of Applied Engineering Science, 4(17), 13–19

    Google Scholar 

  32. Corbu, O., Puskás, A., Sandu, A. V., Ioani, A. M., Hussin, K., & Sandu, I. G. (2015). New concrete with recycled aggregates from leftover concrete. Applied Mechanics and Materials, 754–755, 389–394. https://doi.org/10.4028/www.scientific.net/AMM.754-755.389

    Article  Google Scholar 

  33. Chakradhara Rao, M., Bhattacharyya, S. K., & Barai, S. V. (2011). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures, 44, 205–220. https://doi.org/10.1617/s11527-010-9620-x

    Article  Google Scholar 

  34. Surya, M. K. R., & Lakshmy, V. VLp. (2013). Recycled Aggregate Concrete for Transportation Infrastructure. Procedia Social and Behavioral Sciences, 104, 1158–1167. https://doi.org/10.1016/j.sbspro.2013.11.212

    Article  Google Scholar 

  35. Arora, S., & Singh, S. P. (2017). Fatigue strength and failure probability of concrete made with RCA. Magazine of Concrete Research, 69, 55–67. https://doi.org/10.1680/jmacr.15.00353

    Article  Google Scholar 

  36. Li, J., Xiao, H., & Zhou, Y. (2009). Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Construction and Building Materials, 23, 1287–1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019

    Article  Google Scholar 

  37. Limbachiya, M. C. (2010). Recycled aggregates: Production, properties and value-added sustainable applications. Journal Wuhan University of Technology, Materials Science Edition, 25, 1011–1016. https://doi.org/10.1007/s11595-010-0140-x

    Article  Google Scholar 

  38. INVIAS. (2013). Pavimento de concreto hidráulico, in: Especificaciones Gen. Construcción Carreteras y Normas Ens. Para Mater. Carreteras, Instituto Nacional de Vías, 2013: pp. 1–74.

  39. ASTM C33/C33M. (2016). Standard Specification for Concrete Aggregates. ASTM International. https://doi.org/10.1520/C0033_C0033M-16E01

    Book  Google Scholar 

  40. ASTM C29/C29M. (2017). Standard test method for bulk density (“Unit Weight”) and voids in aggregate. ASTM International. https://doi.org/10.1520/C0029_C0029M-17A

    Book  Google Scholar 

  41. ASTM C127. (2015). Standard test method for relative density (Specific Gravity) and absorption of coarse aggregate. ASTM International. https://doi.org/10.1520/C0127-15

    Book  Google Scholar 

  42. ASTM C128. (2015). Standard test method for relative density (specific gravity) and absorption of fine aggregate. ASTM International. https://doi.org/10.1520/C0128-15

    Book  Google Scholar 

  43. ASTM C566. (2019). Standard test method for total evaporable moisture content of aggregate by drying. ASTM International. https://doi.org/10.1520/C0566-19

    Book  Google Scholar 

  44. ASTM C136/C136M. (2019). Standard test method for sieve analysis of fine and coarse aggregates. ASTM International. https://doi.org/10.1520/C0136_C0136M-19

    Book  Google Scholar 

  45. Argos, Cemento uso estructural - Ficha técnica, 2017. https://www.argos.co/Media/Colombia/images/FT-CEMENTO-USO-ESTRUCTURAL.pdf Accessed 13 Mar 2018.

  46. ASTM C1157/C1157M. (2017). Standard performance specification for hydraulic cement. ASTM International. https://doi.org/10.1520/C1157_C1157M-17

    Book  Google Scholar 

  47. ACI Committee 211. (2009). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (Reapproved 2009), American Concrete Institute. Farmington Hills.

    Google Scholar 

  48. Kosmatka, S. H., & Wilson, M. L. (2016). Design and control of concrete mixtures. (16th ed.). Portland Cement Association.

    Google Scholar 

  49. Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26, 565–573. https://doi.org/10.1016/j.conbuildmat.2011.06.059

    Article  Google Scholar 

  50. Paul, S. C. (2017). Data on optimum recycle aggregate content in production of new structural concrete. Data in Brief., 15, 987–992. https://doi.org/10.1016/j.dib.2017.11.012

    Article  Google Scholar 

  51. ASTM C192/C192M. (2016). Standard practice for making and curing concrete test specimens in the laboratory. ASTM International. https://doi.org/10.1520/C0192_C0192M-16A

    Book  Google Scholar 

  52. ASTM C39/C39M. (2018). Standard test method for compressive strength of cylindrical concrete specimens. ASTM International. https://doi.org/10.1520/C0039_C0039M-18

    Book  Google Scholar 

  53. ASTM C78/C78M. (2018). Standard test method for flexural strength of concrete (using simple beam with third-point loading. ASTM International. https://doi.org/10.1520/C0078_C0078M-18

    Book  Google Scholar 

  54. Yong, P. C., & Teo, D. C. L. (2009). Utilisation of recycled aggregate as coarse aggregate in concrete. Journal of Civil Engineering, Science and Technology, 1, 1–6. https://doi.org/10.33736/jcest.60.2009

    Article  Google Scholar 

  55. Akbarnezhad, A., Ong, K. C. G., Zhang, M. H., Tam, C. T., & Foo, T. W. J. (2011). Microwave-assisted beneficiation of recycled concrete aggregates. Construction and Building Materials, 25, 3469–3479. https://doi.org/10.1016/j.conbuildmat.2011.03.038

    Article  Google Scholar 

  56. Pepe, M., Toledo Filho, R. D., Koenders, E. A. B., & Martinelli, E. (2014). Alternative processing procedures for recycled aggregates in structural concrete. Construction and Building Materials, 69, 124–132. https://doi.org/10.1016/j.conbuildmat.2014.06.084

    Article  Google Scholar 

  57. Sheen, Y.-N., Wang, H.-Y., Juang, Y.-P., & Le, D.-H. (2013). Assessment on the engineering properties of ready-mixed concrete using recycled aggregates. Construction and Building Materials, 45, 298–305. https://doi.org/10.1016/j.conbuildmat.2013.03.072

    Article  Google Scholar 

  58. Kou, S. C., & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032

    Article  Google Scholar 

  59. Abd Elhakam, A., Mohamed, A. E., & Awad, E. (2012). Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Construction and Building Materials, 35, 421–427. https://doi.org/10.1016/j.conbuildmat.2012.04.013

    Article  Google Scholar 

  60. Katz, A. (2003). Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cement and Concrete Research, 33, 703–711. https://doi.org/10.1016/S0008-8846(02)01033-5

    Article  Google Scholar 

  61. Hamad, B. S., & Dawi, A. H. (2017). Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates. Case Studies in Construction Materials, 7, 228–239. https://doi.org/10.1016/j.cscm.2017.08.006

    Article  Google Scholar 

  62. Pradhan, S., Kumar, S., & Barai, S. V. (2020). Multi-scale characterisation of recycled aggregate concrete and prediction of its performance. Cement and Concrete Composites, 106, 103480. https://doi.org/10.1016/j.cemconcomp.2019.103480

    Article  Google Scholar 

  63. Fan, Y., Xiao, J., & Tam, V. W. Y. (2014). Effect of old attached mortar on the creep of recycled aggregate concrete. Structural Concrete, 15, 169–178. https://doi.org/10.1002/suco.201300055

    Article  Google Scholar 

  64. Sri Ravindrarajah, R., & Tam, C. T. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37, 29–38. https://doi.org/10.1680/macr.1985.37.130.29

    Article  Google Scholar 

  65. Li, C., Wang, F., Deng, X., Li, Y., & Zhao, S. (2019). Testing and prediction of the strength development of recycled-aggregate concrete with large particle natural aggregate. Materials (Basel)., 12, 1891. https://doi.org/10.3390/ma12121891

    Article  Google Scholar 

  66. Geng, Y., Wang, Q., Wang, Y., & Zhang, H. (2019). Influence of service time of recycled coarse aggregate on the mechanical properties of recycled aggregate concrete. Materials and Structures, 52, 97. https://doi.org/10.1617/s11527-019-1395-0

    Article  Google Scholar 

  67. Witczak, M. W., Kaloush, K., Pellinen, T., El-Basyouny, M., & Von Quintus, H. (2002). NCHRP Report 465: simple performance test for superpave mix design. Transportation Research Board-National Research Council.

    Google Scholar 

  68. Yang, K.-H., Chung, H.-S., & Ashour, A. F. (2008). Influence of type and replacement level of recycled aggregates on concrete properties. ACI Materials Journal, 105, 289–296

    Google Scholar 

  69. ASTM C204. (2017). Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM International. https://doi.org/10.1520/C0204-17

    Book  Google Scholar 

  70. ASTM C430. (2017). Standard test method for fineness of hydraulic cement by the 45-μm (No. 325) Sieve. ASTM International. https://doi.org/10.1520/C0430-17

    Book  Google Scholar 

  71. ASTM C151/C151M. (2016). Standard test method for autoclave expansion of hydraulic cement. ASTM International. https://doi.org/10.1520/C0151_C0151M-16

    Book  Google Scholar 

  72. ASTM C191. (2013). Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International. https://doi.org/10.1520/C0191

    Book  Google Scholar 

  73. ASTM C1038/C1038M. (2014). Standard test method for expansion of hydraulic cement mortar bars stored in water. ASTM International. https://doi.org/10.1520/C1038_C1038M-14B

    Book  Google Scholar 

  74. ASTM C109/C109M. (2016). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International. https://doi.org/10.1520/C0109_C0109M-16A

    Book  Google Scholar 

  75. Fonseca, N., de Brito, J., & Evangelista, L. (2011). The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cement and Concrete Composites, 33, 637–643. https://doi.org/10.1016/j.cemconcomp.2011.04.002

    Article  Google Scholar 

  76. Gómez-Soberón, J. M. (2002). Porosity of recycled concrete with substitution of recycled concrete aggregate. Cement and Concrete Research, 32, 1301–1311. https://doi.org/10.1016/S0008-8846(02)00795-0

    Article  Google Scholar 

  77. Ozbakkaloglu, T., Gholampour, A., & Xie, T. (2018). Mechanical and durability properties of recycled aggregate concrete: Effect of recycled aggregate properties and content. Journal of Materials in Civil Engineering, 30, 04017275. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002142

    Article  Google Scholar 

  78. Gholampour, A., & Ozbakkaloglu, T. (2018). Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates. Engineering Structures, 157, 224–234. https://doi.org/10.1016/j.engstruct.2017.12.015

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the company Match Overseas S.A.S for its sponsorship of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Sabău.

Ethics declarations

Conflict of Interest

The authors declares that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabău, M., Remolina Duran, J. Prediction of Compressive Strength of General-Use Concrete Mixes with Recycled Concrete Aggregate. Int. J. Pavement Res. Technol. 15, 73–85 (2022). https://doi.org/10.1007/s42947-021-00012-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00012-6

Keywords

Navigation