Skip to main content
Log in

An image-based system for pavement crack evaluation using transfer learning and wavelet transform

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Automatic systems for pavement inspection can significantly enhance the performance of the Pavement Management Systems (PMSs). Cracking is the most current distress in any type of pavement. Progress of various technologies leads to a lot of effort in developing an automatic system for pavement cracking inspection. In the early image-based systems, the feature extraction process for crack classification must be done by using various image processing techniques in an expert-based system. In recent years, the new machine learning techniques such as a deep convolutional neural network (DCNN) provide more efficient models with the ability of automatic feature extracting, but these models need a lot of labeled data for training. Transfer learning is a technique that solves this problem using pre-trained models. In this research, several pre-trained models (AlexNet, GoogleNet, SqueezNet, ResNet-18, ResNet-50, ResNet-101, DenseNet-201, and Inception-v3) have been used to retrain based on pavement images using transfer learning. This study aims to evaluate the efficiency of retrained DCNNs in the detection and classification of the pavement cracking. Also, it presents a more effective algorithm based on a developed wavelet transform module with more regulizer parameters for crack segmentation. The result indicated that retrained classifier models provide reliable outputs with a range of 0.94 to 0.99 in confusion matrix-based performance, but the speed of some models is significantly higher than others. Also, the results clarified that the developed wavelet module could segment crack pixels with a high level of clarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Y. Chan, B. Huang, X. Yan, S. Richards, Investigating effects of asphalt pavement conditions on traffic accidents in Tennessee based on the pavement management system (PMS), J. Adv. Transp. 44 (3) (2010) 150–161.

    Article  Google Scholar 

  2. D. A. Noyce, H. Bahia, J. Yambo, J. Chapman, A. J. W. Bill, Incorporating road safety into pavement management: Maximizing surface friction for road safety improvements, Report Number MRUTC 04-04. Traffic Operations and Safety Laboratory, University of Wisconsin, Madison, WI, USA, 2007.

    Google Scholar 

  3. M. Y. Shahin, Pavement management for airports, roads, and parking lots, Springer, NY, USA, 1994, p.2–5.

    Book  Google Scholar 

  4. F. M. Nejad, H. Zakeri, “The Hybrid Method and its Application to Smart Pavement Management,” in Metaheuristics in Water, Geotechnical and Transport Engineering, ed. By X.-S. Yang, A. H. Gandomi, S. Talatahari, A. H. Alavi, Elsevier, Oxford, 2013, p. 439–484.

    Chapter  Google Scholar 

  5. H. Zakeri, F. M. Nejad, A. Fahimifar, Image Based Techniques for Crack Detection, Classification and Quantification in Asphalt Pavement: A Review, Archives Comput. Methods Eng. 24 (4) (2017) 935–977.

    Article  MATH  Google Scholar 

  6. V. Ananth, P. Ananthi, V. Elakkiya, J. Priyadharshini, R. Shiyamili, Automatic Pavement Crack Detection Algorithm, Inter. Innov.Res. J. Eng. Technol. 2 (1) (2017) 86–89.

    Google Scholar 

  7. K. Zhang, H. Cheng, B. Zhang, Unified Approach to Pavement Crack and Sealed Crack Detection Using Preclassification Based on Transfer Learning, J. Comput. Civ. Eng. 32 (2) (2018) 04018001.

    Article  Google Scholar 

  8. B. Mataei, F. Moghadas Nejad, M. Zahedi, H. Zakeri, Evaluation of pavement surface drainage using an automated image acquisition and processing system, Autom. Constr. 86 (1) (2018) 240–255.

    Article  Google Scholar 

  9. Z. Hong, Exact extraction method for road rutting laser lines, Analysis, vol. 106070, p. 19, 2018.

    Google Scholar 

  10. C. Ting, W. Weixing, Y. Nan, G. Ting, W. Fengping, Detection method for the depth of pavement broken block in cement concrete based on 3D laser scanning technology, Infrared Laser Engineering, 2 (1) (2017) 013.

    Google Scholar 

  11. S. Dai and K. Hoegh, 3D step frequency GPR Asphalt pavement stripping detection: Case study evaluating filtering approaches. In Advanced Ground Penetrating Radar (IWAGPR), 9th International Workshop, Edinburgh, Scotland, 2017, pp. 1–7.

  12. S. Li, C. Yuan, D. Liu, H. Cai, Integrated processing of image and GPR data for automated pothole detection, J. Comput. Civ. Eng. 30 (6) (2016) 04016015.

    Article  Google Scholar 

  13. X. Chapeleau, J. Blanc, P. Hornych, J.-L. Gautier, J. Carroget, Use of distributed fiber optic sensors to detect damage in a pavement, 12th ISAP Conference on Asphalt pavement, Raleigh, North Carolina, USA, 2014.

  14. M. R. Carlos, M. E. Aragón, L. C. González, H. J. Escalante, F. Martínez, Evaluation of Detection Approaches for Road Anomalies Based on Accelerometer Readings—Addressing Who’s Who, IEEE Transactions Intelligent Transp. Syst. 19 (10) (2018) 3334–3343.

    Article  Google Scholar 

  15. A. Fox, B. V. Kumar, J. Chen, F. Bai, “Multi-lane pothole detection from crowdsourced undersampled vehicle sensor data, IEEE Transactions Mobile Comput. 16 (12) (2017) 3417–3430.

    Article  Google Scholar 

  16. S. Nakashima, S. Aramaki, Y. Kitazono, S. Mu, K. Tanaka, S. Serikawa, Application of ultrasonic sensors in road surface condition distinction methods, Sensors 16 (10) (2016) 1678.

    Article  Google Scholar 

  17. R. Madli, S. Hebbar, P. Pattar, V. Golla, Automatic detection and notification of potholes and humps on roads to aid drivers, IEEE Sensors J. 15 (8) (2015) 4313–4318.

    Article  Google Scholar 

  18. J. Mehta, V. Mathur, D. Agarwal, A. Sharma, K. Prakasha, Pothole Detection and Analysis System (Pol) AS) for Real Time Data Using Sensor Networks, J. Eng. Appl. Sci. 12 (12) (2017) 3090–3097.

    Google Scholar 

  19. M. Solla, S. Lagüela, H. González-Jorge, P. Arias, Approach to identify cracking in asphalt pavement using GPR and infrared thermographic methods: Preliminary findings, NDT & E Inter. 62 (1) (2014) 55–65.

    Article  Google Scholar 

  20. J. Huang, W. Liu, X. Sun, A pavement crack detection method combining 2D with 3D information based on Dempster-Shafer theory, Computer-Aided Civ. Infrast. Eng. 29 (4) (204) 299–313.

  21. Y. O. Ouma and M. Hahn, Wavelet-morphology based detection of incipient linear cracks in asphalt pavements from RGB camera imagery and classification using circular Radon transform, Adv. Eng. Informatics 30 (3) (2016) 481–499.

    Article  Google Scholar 

  22. S. Mathavan, K. Kamal, M. Rahman, A Review of Three-Dimensional Imaging Technologies for Pavement Distress Detection and Measurements, IEEE Transactions Intelligent Transp. Syst. 16 (5) (2015) 2353–2362.

    Article  Google Scholar 

  23. Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (1) (2015) 436.

    Article  MathSciNet  Google Scholar 

  24. L. Deng, D. Yu, Deep learning: methods and applications, Foundations Trends® in Signal Process. 7 (3–4) (2014) 197–387.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Lokeshwor, L. K. Das, S. Goel, Robust method for automated segmentation of frames with/without distress from road surface video clips, J. Transp. Eng. 140 (1) (2013) 31–41.

    Article  Google Scholar 

  26. Y. ZHANG and H. ZHOU, “Automatic pavement cracks detection and classification using radon transform, J. Infor. Comput. Sci. 9 (17) (2012) 5241–5247.

    Google Scholar 

  27. Y. J. Tsai, V. Kaul, A. Yezzi, Automating the crack map detection process for machine operated crack sealer, Autom. Constr. 31 (1) (2013) 10–18.

    Article  Google Scholar 

  28. S. Varadharajan, S. Jose, K. Sharma, L. Wander, C. Mertz, Vision for road inspection. In IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, USA, 2014, pp. 115–122.

  29. W. Xu, Z. Tang, J. Zhou, J. Ding, Pavement crack detection based on saliency and statistical features. In IEEE International Conference on Image Processing, Melbourne, Australia, 2013, pp. 4093–4097.

  30. H. Zakeri, F. M. Nejad, A. Fahimifar, Rahbin: A quadcopter unmanned aerial vehicle based on a systematic image processing approach toward an automated asphalt pavement inspection, Autom. Constr. 72 (2) (2016) 211–235.

    Article  Google Scholar 

  31. S. Hongxun, W. Weixing, W. Fengping, W. Linchun, W. Zhiwei, Pavement crack detection by ridge detection on fractional calculus and dual-thresholds, Inter. J. Multimedia Ubiquitous Eng. 10 (4) (2015) 19–30.

    Article  Google Scholar 

  32. C. A. Lettsome, Y.-C. J. Tsai, V. Kaul, Enhanced adaptive filter-bank-based automated pavement crack detection and segmentation system, J. Electronic Imaging 21 (4) (2012) 043008.

    Article  Google Scholar 

  33. F. M. Nejad and H. Zakeri, An optimum feature extraction method based on Wavelet-Radon Transform and Dynamic Neural Network for pavement distress classification, Expert Syst. Appl. 38 (8) (2011) 9442–9460.

    Article  Google Scholar 

  34. H. Ceylan, M. B. Bayrak, K. Gopalakrishnan, Neural networks applications in pavement engineering: A recent survey, Int. J. Pavement Eng. 7 (6) (2014) 434–444.

    Google Scholar 

  35. N.-D. Hoang, Q.-L. Nguyen, D. Tien Bui, Image processing-based classification of asphalt pavement cracks using support vector machine optimized by artificial bee colony, J. Comput. Civ. Eng. 32 (5) (2018) 04018037.

    Article  Google Scholar 

  36. T. Wang, K. Gopalakrishnan, O. Smadi, A. K. Somani, Automated shape-based pavement crack detection approach, Transp. 33 (3) (2018) 598–608.

    Article  Google Scholar 

  37. W. R. L. d. Silva and D. S. d. Lucena, Concrete Cracks Detection Based on Deep Learning Image Classification. In Multidisciplinary Digital Publishing Institute Proceedings, 18th International Conference on Experimental Mechanics (ICEM18), Brussels, Belgium, 2018.

  38. H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, H. Omata, Road Damage Detection Using Deep Neural Networks with Images Captured Through a Smartphone, Comput. Aided Civ. Infras. Eng. 33 (12) (2018) 1127–1141.

    Article  Google Scholar 

  39. Y.-J. Cha, W. Choi, O. Büyüköztürk, Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks, Comput. Aided Civ. Infras. Eng. 32 (5) (2017) 361–378.

    Article  Google Scholar 

  40. Y. Liu, J. Yao, X. Lu, R. Xie, L. Li, DeepCrack: A Deep Hierarchical Feature Learning Architecture for Crack Segmentation, Neurocomput. 338 (1) (2019) 139–153. https://doi.org/10.1016/j.neucom.2019.01.036

    Article  Google Scholar 

  41. K. Gopalakrishnan, S. K. Khaitan, A. Choudhary, A. Agrawal, Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection, Constr. Build. Mater. 157 (2017) 322–330.

    Article  Google Scholar 

  42. C. V. Dung, Autonomous concrete crack detection using deep fully convolutional neural network, Automation Constr. 99 (2019) 52–58.

    Article  Google Scholar 

  43. S. Albelwi and A. Mahmood, A framework for designing the architectures of deep convolutional neural networks, Entropy 19 (6) (2017) 242.

    Article  Google Scholar 

  44. Z. Tong, J. Gao, Z. Han, Z. Wang, Recognition of asphalt pavement crack length using deep convolutional neural networks, Road Mater. Pavement Des. 19 (6) (2018) 1334–1349.

    Article  Google Scholar 

  45. A. Bhandare, M. Bhide, P. Gokhale, R. Chandavarkar, Applications of Convolutional Neural Networks, Inter. J. Computer Sci. Infor. Technol. 7 (5) (2016) 2206–2215.

    Google Scholar 

  46. C. Kyriakou, S. E. Christodoulou, L. Dimitriou, Detecting and Classifying Roadway Pavement Cracks, Rutting, Raveling, Patching, and Potholes Utilizing Smartphones, In Transportation Research Board 97th Annual Meeting, Washington DC, USA, 2018.

  47. S. Gao, Z. Jie, Z. Pan, F. Qin, R. Li, Automatic Recognition of Pavement Crack via Convolutional Neural Network, In Transactions on Edutainment XIV, ed. By Z. Pan, A. D. Cheok, W. Müller, Springer, Berlin, 2018, p. 82–89.

    Chapter  Google Scholar 

  48. B. Li, K. C. Wang, A. Zhang, E. Yang, G. Wang, Automatic classification of pavement crack using deep convolutional neural network, Inter. J. Pavement Eng. 21 (4) (2018) 1–7, https://doi.org/10.1080/10298436.2018.1485917.

    Google Scholar 

  49. M. A. Nielsen, Neural networks and deep learning. Determination press, USA, 2015.

    Google Scholar 

  50. S. Dorafshan, R. J. Thomas, M. Maguire, Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete, Constr. Build. Mater. 186 (2018) 1031–1045.

    Article  Google Scholar 

  51. D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, In Proceedings-International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 2011.

  52. S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions Knowledge Data Eng. 22 (10) (2010) 1345–1359.

    Article  Google Scholar 

  53. O. Russakovsky et al., Imagenet large scale visual recognition challenge, Inter. J. Comput. Vision 115 (3) (2015) 211–252.

    Article  MathSciNet  Google Scholar 

  54. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, In Advances in neural information processing systems, Harrah’s Lake Tahoe, NV, USA, 2012.

  55. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model size, Computer Vision and Pattern Recognition, Cornell University, USA, 2016.

  56. C. Szegedy et al., Going deeper with convolutions, IEEE conference on computer vision and pattern recognition, Boston, USA, 2015, pp. 1–9.

  57. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, IEEE international conference on computer vision, Santiago, Chile, 2015, pp. 1026–1034.

  58. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, IEEE conference on computer vision and pattern recognition, Las Vegas, USA, 2016, pp. 770–778.

  59. G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely connected convolutional networks, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017.

  60. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in IEEE conference on computer vision and pattern recognition, Las Vegas, USA, 2016, pp. 2818–2826.

  61. P. S. Addison, The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. CRC press, 2017.

  62. P. Prasad and G. Umamadhuri, Biorthogonal Wavelet-based Image Compression, in Artificial Intelligence and Evolutionary Computations in Engineering Systems, ed. By S. Dash, P. Chandra, B. Naidu, R. Bayindir, S. Das, Springer, Singapore, 2018, pp. 391–404.

    Chapter  Google Scholar 

  63. P. Luo, X. Qu, X. Qing, J. Gu, CT Image Denoising Using Double Density Dual Tree Complex Wavelet with Modified Thresholding, 2nd International Conference on Data Science and Business Analytics (ICDSBA), Changsha, China, 2018, pp. 287–290: IEEE.

  64. X. Wang and X. Feng, Pavement distress detection and classification with automated image processing, 2011 International Conference on Transportation, Mechanical, Electrical Engineering (TMEE), Changchun, China, 2011, pp. 1345–1350: IEEE.

  65. B. Sun and Y. Qiu, Automatic Pavement Surface Cracking Recognition Using Wavelet Transforms Technology, Second International Conference on Transportation Engineering, Chengdu, China, 2009, pp. 2201–2206.

  66. C. Ma, W. Wang, C. Zhao, F. Di, Z. Zhu, Pavement cracks detection based on FDWT, International Conference on Computational Intelligence and Software Engineering (CiSE), Wuhan, China, 2009, pp. 1–4: IEEE.

  67. J. Zhou, P. S. Huang, F.-P. Chiang, Wavelet-based pavement distress detection and evaluation, Optical Eng. 45 (2) (2006) 027007.

    Article  Google Scholar 

  68. F. M. Nejad, N. Karimi, H. Zakeri, Automatic image acquisition with knowledge-based approach for multidirectional determination of skid resistance of pavements, Autom. Constr. 71 (2) (2016) 414–429.

    Article  Google Scholar 

  69. G. Yang, Q. J. Li, Y. J. Zhan, K. C. Wang, C. Wang, Wavelet based macrotexture analysis for pavement friction prediction, KSCE J. Civ. Eng. 22 (1) (2018) 117–124.

    Article  Google Scholar 

  70. R. Abbasnia and A. Farsaei, Corrosion detection of reinforced concrete beams with wavelet analysis, Inter. J. Civ. Eng., Transaction A: Civ. Eng. 11 (3) (2013) 160–169.

    Google Scholar 

  71. A. Dixit and S. Majumdar, Comparative analysis of coiflet and daubechies wavelets using global threshold for image denoising, Inter. J. Adv. Eng. Technol. 6 (5) (2013) 2247–2252.

    Google Scholar 

  72. D. Wei and A. C. Bovik, Generalized coiflets with nonzero-centered vanishing moments, IEEE Transactions on Circuits Systems II: Analog Digital Signal Process. 45 (8) (1998) 988–1001.

    Article  MATH  Google Scholar 

  73. D. Wei and H. Cheng, Representations of stochastic processes using coiflet-type wavelets, in Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, USA, 2000, pp. 549–553.

  74. R. Nigam and S. K. Singh, Crack detection in a beam using wavelet transform and photographic measurements, Struct. 25 (2020) 436–447.

    Article  Google Scholar 

  75. V. L. Fox, M. Milanova, S. Al-Ali, Scene Analysis Using Morphological Mathematics and Fuzzy Logic, in Computer Vision in Control Systems-1, ed. By M.N. Favorskaya, L.C. Jain, Springer, Switzerland, 2015, p. 239–259.

    Chapter  Google Scholar 

  76. P. Soille, Morphological image analysis: principles and applications, Springer Science & Business Media, Switzerland, 2013.

    MATH  Google Scholar 

  77. R. C. Gonzalez and R. E. Woods, Digital image processing, 2nd edn. Pearson Education International, London, UK, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Ranjbar.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, S., Nejad, F.M. & Zakeri, H. An image-based system for pavement crack evaluation using transfer learning and wavelet transform. Int. J. Pavement Res. Technol. 14, 437–449 (2021). https://doi.org/10.1007/s42947-020-0098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0098-9

Keywords

Navigation