Skip to main content
Log in

Application of alkali-activated slag in roller compacted concrete

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

One of the most widespread techniques in concrete pavement construction is roller-compacted concrete (RCC) in which Portland cement is used. Recently, an inclination has been seen toward alternative cementitious materials due to environmental concerns expressed over the production of Portland cement. Alkali-activated slag concrete (AASC) has been proposed as a solution to this problem. However, the application of this type of concrete in RCC has been rarely investigated. This study was to fill this gap in the existing literature experimentally. A solution of sodium hydroxide and sodium silicate helped to activate the slag content of AASC. The mechanical and rheological properties of roller-compacted alkali-activated slag concrete (RC-AASC) were assessed by measuring compressive and flexural strengths, optimum compaction moisture, setting time, and strength development of concrete samples. In mix design of RCC, determination of its optimum compaction moisture is a crucial step; therefore, the optimum moisture required for ultimate compaction was estimated, while the variation in combination of alkali activator affected this optimum moisture. The results indicated that the compressive and flexural strengths of RC-AASC with minimum cementitious content were comparable to those of conventional RCC which is mentioned in ACI 327R-14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Naik, Y. M. Chun, R. N. Kraus, S. S. Singh, L. L. C. Pennock, B. W. Ramme, Strength and durability of roller-compacted HVFA concrete pavements, Pract. Period. Struct. Des. Constr. 6 (4) (2001) 154–165.

    Google Scholar 

  2. F. Vahedifard, M. Nili, C.L. Meehan, Assessing the effects of supplementary cementitious materials on the performance of low-cement roller compacted concrete pavement, Constr. Build. Mater. 24 (2010) 2528–2535.

    Google Scholar 

  3. Z. Wu, M. Mahdi, T.D. Rupnow, Accelerated pavement testing of thin RCC over soil cement pavements, Inter. J. Pavement Res. Technol. 9 (3) (2016) 159–168.

    Google Scholar 

  4. C. Hazaree, H. Ceylan, K. Wang, Influences of mixture composition on properties and freeze-thaw resistance of RCC, Constr. Build. Mater. 25 (2011) 313–319.

    Google Scholar 

  5. N. Delatte, N. Amer, C. Storey, Improved Management of RCC Pavement Technology, Department of Civil and Environmental Engineering. Report Number FHWA/CA/OR. University Transportation Center for Alabama, The University of Alabama, Tuscaloosa, Alabama, USA, 2003.

    Google Scholar 

  6. C.D. Atiş, Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition, Cem. Concr. Res. 35 (6) (2005) 1112–1121.

    Google Scholar 

  7. J.-M. Lessard, A. Omran, A. Tagnit-Hamou, R. Gagne, Feasibility of using biomass fly and bottom ashes to produce RCC and PCC, J. Mater. Civ. Eng. 29 (4) (2017) https://doi.org/10.1061/(ASCE)MT.1943-5533.0001796.

    Google Scholar 

  8. A.A. Ramezanianpour, A. Mohammadi, E.R. Dehkordi, Q.B. Chenar, Mechanical properties and durability of roller compacted concrete pavements in cold regions, Constr. Build. Mater 146 (2017) 260–266.

    Google Scholar 

  9. M.N. Lam, S. Jaritngam, D. Le, Roller-compacted concrete pavement made of Electric Arc Furnace slag aggregate: Mx design and mechanical properties, Constr. Build. Mater. 154 (2017) 482–495. https://doi.org/10.1016/j.conbuildmat.2017.07.240

    Google Scholar 

  10. A. Aghaeipour, M. Madhkhan, Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability, Constr. Build. Mater. 141 (2017) 533–541. https://doi.org/10.1016/j.conbuildmat.2017.03.019

    Google Scholar 

  11. A. Karimpour, Effect of time span between mixing and compacting on roller compacted concrete (RCC) containing ground granulated blast furnace slag (GGBFS), Constr. Build. Mater. 24 (2010) 2079–2083.

    Google Scholar 

  12. C. Meyer, Concrete for the New Century, Association of New York City Concrete Producers. Columbia University, Springer, Heidelberg, New York, USA, 2002.

    Google Scholar 

  13. H.F.W. Taylor, Cement chemistry, Cem. Concr. Compos. 20 (4) (1998) 335. https://doi.org/10.1016/S0958-9465(98)00023-7.

    Google Scholar 

  14. Á. Palomo, A. Fernández-jiménez, C. López-hombrados, J.L. Lleyda, I. Eduardo, T. Csic, volante activadas con álcalis railway sleepers made of alkali activated fly ash concrete, Rev. Ing. construcción. 22 (2) (2007) 75–80. https://doi.org/10.4067/S0718-50732007000200001.

    Google Scholar 

  15. A.M. Rashad, A comprehensive overview about the influence of different additives on the properties of alkali-activated slag - A guide for Civil Engineer, Constr. Build. Mater. 47 (2013) 29–55. https://doi.org/10.1016/j.conbuildmat.2013.04.011.

    Google Scholar 

  16. T.R. Naik, Sustainability of Concrete Construction, Pract. Period. Struct. Des. Constr. 13 (2008) 98–103. https://doi.org/10.1061/(ASCE)1084-0680(2008)13:2(98).

    Google Scholar 

  17. J.X. Peng, L. Huang, Y.B. Zhao, P. Chen, L. Zeng, W. Zheng, Modeling of carbon dioxide measurement on cement plants, Adv. Mater. Res. 610–613 (2013) 2120–2128. https://doi.org/10.4028/www.scientific.net/AMR.610-613.2120.

    Google Scholar 

  18. A.M. Rashad, Y. Bai, P.A.M. Basheer, N.B. Mlestone, N.C. Collier, Hydration and properties of sodium sulfate activated slag, Cem. Concr. Compos. 37 (2013) 20–29. https://doi.org/10.1016/j.cemconcomp.2012.12.010.

    Google Scholar 

  19. K. Yang, C. Yang, B. Magee, S. Nanukuttan, J. Ye, Establishment of a preconditioning regime for air permeability and sorptivity of alkali-activated slag concrete, Cem. Concr. Compos. 73 (2016) 19–28. https://doi.org/10.1016/j.cemconcomp.2016.06.019.

    Google Scholar 

  20. J.J. Thomas, A.J. Allen, H.M. Jennings, Density and water content of nanoscale solid C-S-H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage, Cem. Concr. Res. 42 (2) (2012) 377–383. https://doi.org/10.1016/j.cemconres.2011.11.003.

    Google Scholar 

  21. A. Fernández-Jiménez, J.G. Palomo, F. Puertas, alkali-activated slag mortars: Mechanical strength behaviour, Cem. Concr. Res. 29 (8) (1999) 1313–1321. https://doi.org/10.1016/S0008-8846(99)00154-4.

    Google Scholar 

  22. T. Bakharev, J.G. Sanjayan, Y.B. Cheng, Resistance of alkali-activated slag concrete to acid attack, Cem. Concr. Res. 33 (10) (2003) 1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X.

    Google Scholar 

  23. J. Provis, J. van Deventer, Alkali Activated Materials, RILEM state-of-the-art Reports, Chapter 10. Report number. TC 224-AAM. Springer, Heidelberg, New York, USA, 2014.

    Google Scholar 

  24. A.R. Brough, A. Atkinson, Sodium silicate-based, alkali-activated slag mortars - Part I. Strength, hydration and microstructure, Cem. Concr. Res. 32 (6) (2002) 865–879. https://doi.org/10.1016/S0008-8846(02)00717-2.

    Google Scholar 

  25. M. Palacios, P.F.G. Banfill, F. Puertas, Rheology and setting of alkali-activated slag pastes and mortars: Effect if organic admixture, ACI Mater. J. 105 (2) (2008) 140–148. https://doi.org/10.14359/19754.

    Google Scholar 

  26. V. Živica, Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures, Constr. Build. Mater. 21 (2007) 1463–1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002.

    Google Scholar 

  27. J. Chang, A study on the setting characteristics of sodium silicate-activated slag pastes, Cem. Concr. Res. 33 (7) (2003) 1005–1011. https://doi.org/10.1016/S0008-8846(02)01096-7.

    Google Scholar 

  28. D. Krizan, B. Zivanovic, Effects of dosage and modulus of water glass on early hydration of alkali–slag cements, Cem. Concr. Res. 32 (8) (2002) 1181–1188. https://doi.org/10.1016/S0008-8846(01)00717-7.

    Google Scholar 

  29. E. Altan, S.T. Erdoǧan, Alkali activation of a slag at ambient and elevated temperatures, Cem. Concr. Compos. 34 (2) (2012) 131–139. https://doi.org/10.1016/j.cemconcomp.2011.08.003.

    Google Scholar 

  30. S.R. Zedan, M.R. Mohamed, D.A. Ahmed, A.H. Mohammed, Effect of demolition/construction wastes on the properties of alkali activated slag cement, HBRC J. 13 (3) (2017) 331–336. https://doi.org/10.1016/j.hbrcj.2015.12.001.

    Google Scholar 

  31. K. Behfarnia, The effect of alkaline solution-to-slag ratio on permeability of alkali activated slag concrete, Int. J. Civ. Eng. 16 (8) (2018) 897–904. https://doi.org/10.1007/s40999-017-0234-3.

    Google Scholar 

  32. K. Behfarnia, M. Rostami, Mechanical properties and durability of fiber reinforced alkali activated slag concrete, J. Mater. Civ. Eng. 29 (12) (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002073.

    Google Scholar 

  33. A. Allahverdi, E. Najafi, K. Babak, Carbonation versus efflorescence in alkali-activated blast- furnace slag in relation with chemical composition of activator, Int. J. Civ. Eng. 15 (4) (2017) 565-573. https://doi.org/10.1007/s40999-017-0225-4.

    Google Scholar 

  34. H. Maghsoodloorad, A. Allahverdi, Efflorescence formation and control in alkali-activated phosphorus slag cement, Int. J. Civ. Eng. 14 (6) (2016) 425–438. https://doi.org/10.1007/s40999-016-0027-0.

    Google Scholar 

  35. M. Shojaei, K. Behfarnia, R. Mohebi, Application of alkali-activated slag concrete in railway sleepers, Mater. Des. 69 (2015) 89–95. https://doi.org/10.1016/j.matdes.2014.12.051.

    Google Scholar 

  36. American Society for Testing and Materials, Standard Specification for Concrete Aggregates, ASTM C33-13, ASTM International, West Conshohocken, Pennsylvania, USA, 2013.

    Google Scholar 

  37. American Concrete Institue, Guide to Roller- Compacted Concrete Pavements, ACI 327R-14, Farmington Hills, Michigan, USA, 2015.

    Google Scholar 

  38. American Society for Testing and Materials, Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort, ASTM D1557, ASTM International, West Conshohocken, Pennsylvania, USA, 2000.

    Google Scholar 

  39. American Concrete Institue, State of the Art Report on Roller Compacted Concrete Pavements, ACI 325.10R-95, Farmington Hills, Michigan, USA, 2001.

    Google Scholar 

  40. R. Mohebi, K. Behfarnia, M. Shojaei, Abrasion resistance of alkali-activated slag concrete designed by Taguchi method, Constr. Build. Mater. 98 (2015) 792–798. https://doi.org/10.1016/j.conbuildmat.2015.08.128.

    Google Scholar 

  41. M. M. Alonso, S. Gismera, M.T. Blanco, M. Lanzón, F. Puertas, Alkali-activated mortars: Workability and rheological behaviour, Constr. Build. Mater. 145 (2017) 576–587. https://doi.org/10.1016/j.conbuildmat.2017.04.020.

    Google Scholar 

  42. K.-H. Yang, J.-K. Song, Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide, J. Mater. Civ. Eng. 21 (3) (2009) 119–127. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:3(119).

    Google Scholar 

  43. British Standard, Testing Concete - Method for determination of compresive strength of concrete cubes. BS 1881-116. British Standards Institution, London, United Kingdom, 1983. https://doi.org/Construction Standard, CS1:2010.

    Google Scholar 

  44. S. Aydin, B. Baradan, Mechanical and microstructural properties of heat cured alkali-activated slag mortars, Mater. Des. 35 (2012) 374–383. https://doi.org/10.1016/j.matdes.2011.10.005.

    Google Scholar 

  45. C. Duran Atiş, C. Bilim, Ö. Çelik, O. Karahan, Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar, Constr. Build. Mater. 23 (2009) 548–555. https://doi.org/10.1016/j.conbuildmat.2007.10.011.

    Google Scholar 

  46. T. Bakharev, J.G. Sanjayan, Y.B. Cheng, Alkali activation of Australian slag cements, Cem. Concr. Res. 29 (1) (1999) 113–120. https://doi.org/10.1016/S0008-8846(98)00170-7.

    Google Scholar 

  47. American Society for Testing and Materials, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam Third-point Loading). ASTM C78-02., ASTM International, West Conshohocken, Pennsylvania, USA, 2002.

    Google Scholar 

  48. M. Gharavi, Optimization of compacting time with the effects of different pozzolans (type and dosage) on the mechanical properties of RCC, International Symposium on Roller Compacted Concrete, Madrid, Spain, 2003.

    Google Scholar 

  49. N.K. Lee, H.K. Lee, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Constr. Build. Mater. 47 (2013) 1201–1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107.

    Google Scholar 

  50. A. Wardhono, C. Gunasekara, D.W. Law, S. Setunge, Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes, Constr. Build. Mater. 143 (2017) 272–279. https://doi.org/10.1016/j.conbuildmat.2017.03.153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiachehr Behfarnia.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastani, M., Behfarnia, K. Application of alkali-activated slag in roller compacted concrete. Int. J. Pavement Res. Technol. 13, 324–333 (2020). https://doi.org/10.1007/s42947-020-0088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0088-y

Keywords

Navigation