Skip to main content
Log in

The effect of filler type and content on rutting resistance of asphaltic materials

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

This research evaluates the effect of filler type and content on rutting resistance of asphaltic materials by using laboratory experiments. To examine the effect of filler type, two traditional fillers (Silica sandstone powder and Portland cement) and a new recycled lime powder (Eggshell) were considered. To investigate the effect of filler content, three different filler contents were used. Marshall Stability test was performed on full mixes in order to determine the optimum binder content of the mixtures. Then, the static creep test was performed on Fine Aggregate Matrix (FAM) samples. The permanent strain after 10 minutes of recovery (PS-660) was considered as the indicator of potential to rutting. It was shown that PS-660 has a good correlation with total strain after 60 seconds of loading (TS-60), permanent strain after 60 seconds of recovery (PS-120), the slope of the primary (θ1) and secondary (θ2) Phases of the creep curve, binder percent of FAM samples (B%), as well as with Marshall Quotient (MQ) value of full mixes. The test results clearly demonstrated that both filler type and content can significantly influence rutting resistance of asphaltic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Jenks, C. F. Jencks, E. T. Harrigan, M. Adcock, E. P. Delaney, H. Freer, A manual for design of hot mix asphalt with commentary. No. 673. Transp. Res. Brd., 2011.

  2. American Society for Testing and Materials, Standard Specification for Mineral Filler For Bituminous Paving Mixtures. ASTM D242/D242M-09(2014). ASTM International, West Conshohocken, PA, 2014.

    Google Scholar 

  3. D. A. Anderson, W. H. Goetz, Mechanical behavior and reinforcement of mineral filler-asphalt mixtures, 1973.

  4. F. L. Roberts, P. S. Kandhal, E. R. Brown, D. Y. Lee, T. W. Kennedy, Hot mix asphalt materials, mixture design, and construction, second edition, 1996.

  5. R. J. Cominsky, G. A. Huber, T. W. Kennedy, M. Anderson, The Superpave mix design manual for new construction and overlays. No. SHRP-A-407. Strategic Highway Research Program, Washington, DC, 1994.

  6. B. Huang, Q. Dong, E. G. Burdette, Laboratory evaluation of incorporating waste ceramic materials into Portland cement and asphaltic concrete, Constr. Buil. Mater. 23(12) (2009) 3451–3456.

    Article  Google Scholar 

  7. R. Muniandy, E. Aburkaba, L. M. Mahdi, Effect of Mineral Filler Type and Particle Size on Asphalt-Filler Mastic and Stone Mastic Asphalt Laboratory Measured Properties, Australian J.Basic Appl. Sci. 7(11) (2013) 475–487.

    Google Scholar 

  8. S. Sargin, M. Saltan, N. Morova, S. Serin, S. Terzi, Evaluation of rice husk ash as filler in hot mix asphalt concrete, Constr. Buil. Mater. 48 (2013) 390–397.

    Article  Google Scholar 

  9. M. Z. Chen, J. T. Lin, S. P. Wu, C. H. Liu, Utilization of recycled brick powder as alternative filler in asphalt mixture, Constr. Buil. Mater. 25(4) (2011) 1532–1536.

    Article  Google Scholar 

  10. M. Chen, J. Lin, S. Wu, Potential of recycled fine aggregates powder as filler in asphalt mixture, Constr. Buil. Mater. 25(10) (2011) 3909–3914.

    Article  Google Scholar 

  11. V. Antunes, A. C. Freire, L. Quaresma, R. Micaelo, Influence of the geometrical and physical properties of filler in the filler-bitumen interaction, Constr. Buil. Mater. 76 (2015) 322–329.

    Article  Google Scholar 

  12. A. Zulkati, W. Y. Drew, D. S. Delai, Effects of fillers on properties of asphalt-concrete mixture, J. Transp. Eng. 138(7) (2011) 902–910.

    Article  Google Scholar 

  13. H. Wang, I. Al-Qadi, A. Faheem, H. Bahia, S. H. Yang, G. Reinke, Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential, Transp. Res. Rec. 2208 (2011) 33–39.

    Article  Google Scholar 

  14. B. Huang, X. Shu, Q. Dong, J. Shen, Laboratory evaluation of moisture susceptibility of hot-mix asphalt containing cementitious fillers, J. Mater. Civ. Eng. 22(7) (2010) 667–673.

    Article  Google Scholar 

  15. J. S. Chen, P. H. Kuo, P. S. Lin, C. C. Huang, K. Y. Lin, Experimental and theoretical characterization of the engineering behavior of bitumen mixed with mineral filler, Mater. Struc. 41(6) (2008) 1015–1024.

    Article  Google Scholar 

  16. P. J. Rigden, The use of fillers in bituminous road surfacings. A study of filler-binder systems in relation to filler characteristics, J. Chem. Tech. Biotech. 66(9) (1947) 299–309.

    Article  Google Scholar 

  17. A. Faheem, C. Hintz, H. Bahia, I. Al-Qadi, S. Glidden, Influence of filler fractional voids on mastic and mixture performance, Transp. Res. Rec. 2294 (2012) 74–80.

    Article  Google Scholar 

  18. A. Kavussi, R. G. Hicks, Properties of bituminous mixtures containing different fillers. J. Assoc. Asph. Paving Tech. 66 (1997).

  19. J. Zhang, Z. Fan, D. Hu, Z. Hu, J. Pei, W. Kong, Evaluation of asphalt-aggregate interaction based on the rheological properties, Inter. J. Pave. Eng. 19(7) (2018) 586–592.

    Article  Google Scholar 

  20. J. Zhang, X. Li, G. Liu, J. Pei, Effects of material characteristics on asphalt and filler interaction ability, Inter. J. Pave. Eng. (2017) 1–10.

  21. T. D. White, J. E. Haddock, E. Rismantojo, Aggregate tests for hot-mix asphalt mixtures used in pavements. No. 557. Transp. Res. Brd., 2006.

  22. Y. H. Huang, Pavement analysis and design, N.J., U..SA., 1993.

  23. T. D. White, Contributions of pavement structural layers to rutting of hot mix asphalt pavements. No. 468. Transp. Res. Brd., 2002.

  24. D. N. Little, D. H. Allen, A. Bhasin, Modeling and design of flexible pavements and materials, Springer International Publishing, 2017.

  25. W. Mogawer, K. Stuart, Effects of mineral fillers on properties of stone matrix asphalt mixtures, Transp. Res. Rec. 1530 (1996) 86–94.

    Article  Google Scholar 

  26. B. Huang, X. Shu, X. Chen, Effects of mineral fillers on hotmix asphalt laboratory-measured properties, Inter. J. Pave. Eng. 8(1) (2007) 1–9.

    Article  Google Scholar 

  27. A. Faheem, H. Wen, L. Stephenson, H. Bahia, Effect of mineral filler on damage resistance characteristics of asphalt binders. Asphalt Paving Technology-Proceedings, 77 (2008) 885.

    Google Scholar 

  28. S. Tapkin, Mechanical evaluation of asphalt-aggregate mixtures prepared with fly ash as a filler replacement, Canadian J. Civ. Eng. 35(1) (2008) 27–40.

    Article  Google Scholar 

  29. V. Sharma, S. Chandra, R. Choudhary, Characterization of fly ash bituminous concrete mixes, J. Mater. Civ. Eng. 22(12) (2010) 1209–1216.

    Article  Google Scholar 

  30. H. U. Bahia, A. Faheem, C. Hintz, Test methods and specification criteria for mineral filler used in hot mix asphalt, Transp. Res. Brd., 2011.

  31. S. Chandra, R. Choudhary, Performance characteristics of bituminous concrete with industrial wastes as filler, J. Mater. Civ. Eng. 25(11) (2012) 1666–1673.

    Article  Google Scholar 

  32. M. C. Liao, G. Airey, J. S. Chen, Mechanical properties of filler-asphalt mastics, Inter. J. Pave. Res. Tech. 6(5) (2013) 576–581.

    Google Scholar 

  33. Vice Presidency for Strategic Planning and Supervision, Iran Highway Asphalt Paving Code. No. 234, First Edition. Ministry of Roads and Urban Development, 2011.

  34. American Society for Testing and Materials, ASTM C128-15 (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  35. American Society for Testing and Materials, Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus. ASTM D6926–16. ASTM International, West Conshohocken, PA, 2016.

    Google Scholar 

  36. American Society for Testing and Materials, Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM D6927-15 (2015). ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  37. Asphalt Institute, MS-2 Asphalt Mix Design Methods. 7th Edition. Asphalt Institute, 2015

  38. A. Ghanbari, Evaluating the Effect of Crumb Rubber on the Fracture Properties of Asphaltic Materials Using a Standardized Composite, (M.Sc. Thesis) Civil Engineering Department, Sharif University of Technology, 2015.

  39. A. Motamed, A. Bhasin, A. Izadi, Evaluating Fatigue-Cracking Resistance of Asphalt Binders in a Standardized Composite Using Continuum Damage Theory, J. Mater. Civ. Eng. 25(9) (2012) 1209–1219.

    Article  Google Scholar 

  40. W. O. Tam, M. Solaimanian, T. W. Kennedy, Development and use of static creep test to evaluate rut resistance of SUPERPAVE mixes, Work. 1250 (2000) 4.

    Google Scholar 

  41. A. Jamshidi, K. Kurumisawa, T. Nawa, J. Mao, B. Li, Characterization of effects of thermal property of aggregate on the carbon footprint of asphalt industries in China. J. Traffic Transp. Eng. (English Edition), 4(2) (2017) 118–130.

    Article  Google Scholar 

  42. P. Pliya, D. Cree, Limestone derived eggshell powder as a replacement in Portland cement mortar, Constr. Buil. Mater. 95 (2015) 1–9.

    Article  Google Scholar 

  43. W. Grabowski, J. Wilanowicz, The structure of mineral fillers and their stiffening properties in filler-bitumen mastics, Mater. Struc. 41(4) (2008) 793–804.

    Article  Google Scholar 

Download references

Acknowledgment

Mr. Hamidi would like to express his special thanks of gratitude to Dr. M. Mohammadi of Shiraz University, who helped generously in conducting this research and had an undeniable role in encouraging the first author to complete the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Hamidi.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidi, A., Motamed, A. The effect of filler type and content on rutting resistance of asphaltic materials. Int. J. Pavement Res. Technol. 12, 249–258 (2019). https://doi.org/10.1007/s42947-019-0031-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-019-0031-2

Keywords

Navigation