Skip to main content

Advertisement

Log in

Applications of transition-metal sulfides in the cathodes of lithium–sulfur batteries

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Lithium–sulfur (Li–S) batteries are considered as one of the most promising candidates for next-generation energy storage systems with high energy density and reliable performance. However, the commercial applications of lithium–sulfur batteries is hindered by several shortcomings like the poor conductivity of sulfur and its reaction products, and the loss of active materials owing to the diffusion of lithium polysulfides (LiPSs) into the electrolyte. Hence, the effective restraining of the LiPSs and the promotion of the sluggish conversion are highly demanded to fulfill the potential of lithium–sulfur batteries. Here, we summarize the applications of transition-metal sulfides (TMSs) in the cathodes over recent years and demonstrate the unique advantages they possess to realize reliable long-life lithium–sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

References

  1. Babu G, Ababtain K, Ng KY, Arava LM. Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci Rep. 2015;5:8763

    Article  CAS  Google Scholar 

  2. Xiao ZB, Yang Z, Zhou LJ, Zhang LJ, Wang RH. Highly conductive porous transition metal dichalcogenides via water steam etching for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2017;9(22):18845

    Article  CAS  Google Scholar 

  3. Zhai PB, Wang TS, Yang WW, Cui SQ, Zhang P, Nie AM, Zhang QF, Gong YJ. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv Energy Mater. 2019;9(18):1804019

    Article  CAS  Google Scholar 

  4. Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater. 2017;7(24):1700260

    Article  CAS  Google Scholar 

  5. Guo PQ, Liu DQ, Liu ZJ, Shang XN, Liu QM, He DY. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim Acta. 2017;256:28

    Article  CAS  Google Scholar 

  6. Du LY, Wu Q, Yang LJ, Wang X, Che RC, Lyu ZY, Chen W, Wang XZ, Hu Z. Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. Nano Energy. 2019;57:34

    Article  CAS  Google Scholar 

  7. Nazar LF, Cuisinier M, Pang Q. Lithium-sulfur batteries. MRS Bull. 2014;39(5):436

    Article  CAS  Google Scholar 

  8. Yang YX, Zhong YR, Shi QW, Wang ZH, Sun KN, Wang HL. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions. Angew Chem Int Ed Engl. 2018;57(47):15549

    Article  CAS  Google Scholar 

  9. Pan HL, Chen Jh, Cao RG, Murugesan V, Rajput NN, Han KS, Persson K, Estevez L, Engelhard MH, Zhang JG. Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nat Energy. 2017;2(10):813

    Article  CAS  Google Scholar 

  10. Fang RP, Zhao SY, Sun ZH, Wang DW, Cheng HM, Li F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater. 2017;29(48):1606823

    Article  CAS  Google Scholar 

  11. Liu X, Huang JQ, Zhang Q, Mai LQ. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv Mater. 2017;29(20):1601759

    Article  CAS  Google Scholar 

  12. Ye C, Jiao Y, Jin HY, Slattery AD, Davey K, Wang HH, Qiao SZ. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew Chem Int Ed Engl. 2018;57(51):16703

    Article  CAS  Google Scholar 

  13. Pang Q, Liang X, Kwok CY, Nazar LF. Review—the importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries. J Electrochem Soc. 2015;162(14):A2567

    Article  CAS  Google Scholar 

  14. Hua WX, Yang Z, Nie HG, Li ZY, Yang JZ, Guo ZQ, Ruan CP, Chen XA, Huang SM. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano. 2017;11(2):2209

    Article  CAS  Google Scholar 

  15. He JR, Manthiram A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019;20:55

    Article  Google Scholar 

  16. Liang X, Wen ZY, Liu Y, Wu MF, Jin J, Zhang H, Wu XW. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J Power Sources. 2011;196(22):9839

    Article  CAS  Google Scholar 

  17. Chen SR, Gao Y, Yu ZX, Gordin ML, Song JX, Wang DH. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte. Nano Energy. 2017;31:418

    Article  CAS  Google Scholar 

  18. Lin Y, Wang XM, Liu J, Miller JD. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy. 2017;31:478

    Article  CAS  Google Scholar 

  19. Adams BD, Carino EV, Connell JG, Han KS, Cao R, Chen J, Zheng J, Li Q, Mueller KT, Henderson WA. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy. 2017;40:607

    Article  CAS  Google Scholar 

  20. Fan L, Chen SH, Zhu JY, Ma RF, Li SP, Podila R, Rao AM, Yang GZ, Wang CX, Liu Q. Simultaneous suppression of the dendrite formation and shuttle effect in a lithium-sulfur battery by bilateral solid electrolyte interface. Adv Sci. 2018;5(9):1700934

    Article  CAS  Google Scholar 

  21. Luo J, Lee RC, Jin JT, Weng YT, Fang CC, Wu NL. A dual-functional polymer coating on a lithium anode for suppressing dendrite growth and polysulfide shuttling in Li-S batteries. Chem Commun (Camb). 2017;53(5):963

    Article  CAS  Google Scholar 

  22. Wang TS, Zhai PB, Legut D, Wang L, Liu XP, Li BX, Dong CX, Fan YC, Gong YJ, Zhang QF. S-doped graphene-regional nucleation mechanism for dendrite-free lithium metal anodes. Adv Energy Mater. 2019;9(24):1804000

    Article  CAS  Google Scholar 

  23. Cui SQ, Zhai PB, Yang WW, Wei Y, Xiao J, Deng LB, Gong YJ. Large-scale modification of commercial copper foil with lithiophilic metal layer for Li metal battery. Small. 2020;16(5):e1905620

    Article  CAS  Google Scholar 

  24. Zhai PB, Wei Y, Xiao J, Liu W, Zuo JH, Gu XK, Yang WW, Cui S, Li B, Yang SB, Gong YJ. In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes. Adv Energy Mater. 2020;10(8):1903339

    Article  CAS  Google Scholar 

  25. Bai SY, Liu XZ, Zhu K, Wu SC, Zhou HS. Metal–organic framework-based separator for lithium–sulfur batteries. Nat Energy. 2016;1(7):1

    Article  CAS  Google Scholar 

  26. Sun J, Sun YM, Pasta M, Zhou GM, Li YZ, Liu W, Xiong F, Cui Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium–sulfur batteries. Adv Mater. 2016;28(44):9797

    Article  CAS  Google Scholar 

  27. Zhai PY, Peng HJ, Cheng XB, Zhu L, Huang JQ, Zhu WC, Zhang Q. Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries. Energy Storage Mater. 2017;7:56

    Article  Google Scholar 

  28. Imtiaz S, Ali Zafar Z, Razaq R, Sun D, Xin Y, Li Q, Zhang ZL, Zheng L, Huang YH, Anderson JA. Electrocatalysis on separator modified by molybdenum trioxide nanobelts for lithium-sulfur batteries. Adv Mater Interfaces. 2018;5(15):1800243

    Article  CAS  Google Scholar 

  29. Yu XW, Manthiram A. Enhanced interfacial stability of hybrid-electrolyte lithium-sulfur batteries with a layer of multifunctional polymer with intrinsic nanoporosity. Adv Func Mater. 2019;29(3):1805996

    Article  CAS  Google Scholar 

  30. Tian D, Song XQ, Wang MX, Wu X, Qiu Y, Guan B, Xu XZ, Fan LS, Zhang NQ, Sun KN. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv Energy Mater. 2019;9(46):1901940

    Article  CAS  Google Scholar 

  31. Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009;8(6):500

    Article  CAS  Google Scholar 

  32. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644

    Article  CAS  Google Scholar 

  33. Zhang MD, Yu C, Zhao CT, Song XD, Han XT, Liu SH, Hao C, Qiu JS. Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Mater. 2016;5:223

    Article  CAS  Google Scholar 

  34. He JR, Luo L, Chen YF, Manthiram A. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv Mater. 2017;29(34):1702707

    Article  CAS  Google Scholar 

  35. Chong WG, Huang JQ, Xu ZL, Qin XY, Wang XY, Kim J-K. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv Func Mater. 2017;27(4):1604815

    Article  CAS  Google Scholar 

  36. Li GR, Lei W, Luo D, Deng YP, Deng ZP, Wang DL, Yu AP, Chen ZW. Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy Environ Sci. 2018;11(9):2372

    Article  CAS  Google Scholar 

  37. Pang Q, Liang X, Kwok CY, Nazar LF. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy. 2016;1(9):1

    Article  CAS  Google Scholar 

  38. Babu G, Masurkar N, Al Salem H, Arava LM. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J Am Chem Soc. 2017;139(1):171

    Article  CAS  Google Scholar 

  39. Sun ZH, Zhang JQ, Yin LC, Hu GJ, Fang RP, Cheng H-M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun. 2017;8(1):1

    Article  CAS  Google Scholar 

  40. Tao XY, Wang JG, Liu C, Wang HT, Yao HB, Zheng GY, Seh ZW, Cai QX, Li WY, Zhou GM. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat Commun. 2016;7:11203

    Article  CAS  Google Scholar 

  41. Kong WB, Yan LJ, Luo YF, Wang DT, Jiang KL, Li QQ, Fan SS, Wang JP. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv Func Mater. 2017;27(18):1606663

    Article  CAS  Google Scholar 

  42. Yang WW, Xiao JW, Ma Y, Cui SQ, Zhang P, Zhai PB, Meng LJ, Wang XG, Wei Y, Du ZG, Li BX, Sun ZB, Yang SB, Zhang QF, Gong YJ. Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium-sulfur batteries. Adv Energy Mater. 2019;9(7):1803137

    Article  CAS  Google Scholar 

  43. Wang L, Song YH, Zhang BH, Liu YT, Wang ZY, Li GR, Liu S, Gao XP. Spherical metal oxides with high tap density as sulfur host to enhance cathode volumetric capacity for lithium−sulfur battery. ACS Appl Mater Interfaces. 2020;12(5):5909

    Article  CAS  Google Scholar 

  44. Al Salem H, Babu G, Rao CV, Arava LM. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J Am Chem Soc. 2015;137(36):11542

    Article  CAS  Google Scholar 

  45. Zhang WC, Yang C, Ding BC, Peng J, Xu F, Zheng MT, Hu H, Xiao Y, Liu YL, Liang YR. Self-crosslinking procedure to yolk-shell Au@microporous carbon nanospheres for lithium−sulfur battery. Chem Commun. 2020;56:1215

    Article  CAS  Google Scholar 

  46. Zhou F, Li Z, Luo X, Wu T, Jiang B, Lu LL, Yao HB, Antonietti M, Yu SH. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li–S batteries. Nano Lett. 2018;18(2):1035

    Article  CAS  Google Scholar 

  47. Dong YF, Zheng SH, Qin JQ, Zhao XJ, Shi HD, Wang XH, Chen J, Wu ZS. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano. 2018;12(3):2381

    Article  CAS  Google Scholar 

  48. Yin LC, Liang J, Zhou GM, Li F, Saito R, Cheng HM. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. Nano Energy. 2016;25:203

    Article  CAS  Google Scholar 

  49. Li YJ, Fan JM, Zheng MS, Dong QF. A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ Sci. 2016;9(6):1998

    Article  CAS  Google Scholar 

  50. Yuan HD, Zhang WK, Wang JG, Zhou GM, Zhuang ZZ, Luo JM, Huang H, Gan YP, Liang C, Xia Y. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Mater. 2018;10:1

    Article  Google Scholar 

  51. Wang MJ, Wang WK, Wang AB, Yuan KG, Miao LX, Zhang XL, Huang YQ, Yu ZB, Qiu JY. A multi-core–shell structured composite cathode material with a conductive polymer network for Li–S batteries. Chem Commun. 2013;49(87):10263

    Article  CAS  Google Scholar 

  52. Zhang YY, Griebel JJ, Dirlam PT, Nguyen NA, Glass RS, Mackay ME, Char K, Pyun J. Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries. J Polym Sci Part A Polym Chem. 2017;55(1):107

    Article  CAS  Google Scholar 

  53. Chen JZ, Henderson WA, Pan HL, Perdue BR, Cao RG, Hu JZ, Wan C, Han KS, Mueller KT, Zhang JG. Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 2017;17(5):3061

    Article  CAS  Google Scholar 

  54. Li ZT, Xu RF, Deng SZ, Su X, Wu WT, Liu SP, Wu MB. MnS decorated N/S codoped 3D graphene which used as cathode of the lithium-sulfur battery. Appl Surf Sci. 2018;433:10

    Article  CAS  Google Scholar 

  55. Zhou GM, Tian HZ, Jin Y, Tao XY, Liu BF, Zhang RF, Seh ZW, Zhuo D, Liu YY, Sun J, Zhao J, Zu CX, Wu DS, Zhang QF, Cui Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci USA. 2017;114(5):840

    Article  CAS  Google Scholar 

  56. Kim SJ, Kim K, Park J, Sung YE. Role and potential of metal sulfide catalysts in lithium-sulfur battery applications. ChemCatChem. 2019;11(10):2373

    Article  CAS  Google Scholar 

  57. Lei TY, Chen W, Huang JW, Yan CY, Sun HX, Wang C, Zhang WL, Li YR, Xiong J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv Energy Mater. 2017;7(4):1601843

    Article  CAS  Google Scholar 

  58. Seh ZW, Yu JH, Li W, Hsu PC, Wang H, Sun Y, Yao H, Zhang Q, Cui Y.  Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat Commun. 2014;5(1):1

    Article  CAS  Google Scholar 

  59. Chen X, Peng HJ, Zhang R, Hou TZ, Huang JQ, Li B, Zhang Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2017;2(4):795

    Article  CAS  Google Scholar 

  60. Li XN, Lu Y, Hou ZG, Zhang WQ, Zhu YC, Qian YT, Liang JW, Qian YT. SnS2-compared to SnO2-stabilized S/C composites toward high-performance lithium sulfur batteries. ACS Appl Mater Interfaces. 2016;8(30):19550

    Article  CAS  Google Scholar 

  61. Zhang QF, Wang YP, Seh ZW, Fu ZH, Zhang RF, Cui Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015;15(6):3780

    Article  CAS  Google Scholar 

  62. You Y, Ye YW, Wei ML, Sun WJ, Tang Q, Zhang J, Chen X, Li HQ, Xu J. Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem Eng J. 2019;355:671

    Article  CAS  Google Scholar 

  63. Wei TX, Liu YF, Dong WJ, Zhang Y, Huang CY, Sun Y, Chen X, Dai N. Surface-dependent localized surface plasmon resonances in CuS nanodisks. ACS Appl Mater Interfaces. 2013;5(21):10473

    Article  CAS  Google Scholar 

  64. Peng HJ, Zhang G, Chen X, Zhang ZW, Xu WT, Huang JQ, Zhang Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew Chem Int Ed Engl. 2016;55(42):12990

    Article  CAS  Google Scholar 

  65. Pang Q, Kundu D, Nazar LF. A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries. Mater Horiz. 2016;3(2):130

    Article  CAS  Google Scholar 

  66. Yuan Z, Peng H, Hou T, Huang J, Chen C, Wang D, Cheng X, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016;16(1):519

    Article  CAS  Google Scholar 

  67. Tran DT, Dong H, Walck SD, Zhang SS. Pyrite FeS2–C composite as a high capacity cathode material of rechargeable lithium batteries. RSC Adv. 2015;5(107):87847

    Article  CAS  Google Scholar 

  68. Dirlam PT, Park J, Simmonds AG, Domanik K, Arrington CB, Schaefer JL, Oleshko VP, Kleine TS, Char K, Glass RS, Soles CL, Kim C, Pinna N, Sung YE, Pyun J. Elemental sulfur and molybdenum disulfide composites for Li-S batteries with long cycle life and high-rate capability. ACS Appl Mater Interfaces. 2016;8(21):13437

    Article  CAS  Google Scholar 

  69. Park J, Yu B-C, Park JS, Choi JW, Kim C, Sung Y-E, Goodenough JB. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv Energy Mater. 2017;7(11):1602567

    Article  CAS  Google Scholar 

  70. Chung SH, Luo L, Manthiram A. TiS2–polysulfide hybrid cathode with high sulfur loading and low electrolyte consumption for lithium-sulfur batteries. ACS Energy Lett. 2018;3(3):568

    Article  CAS  Google Scholar 

  71. Lu YC, He Q, Gasteiger HA. Probing the lithium-sulfur redox reactions: a rotating-ring disk electrode study. J Phys Chem C. 2014;118(11):5733

    Article  CAS  Google Scholar 

  72. Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater. 2015;27(35):5203

    Article  CAS  Google Scholar 

  73. Cañas NA, Hirose K, Pascucci B, Wagner N, Friedrich KA, Hiesgen R. Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochim Acta. 2013;97:42

    Article  CAS  Google Scholar 

  74. Zhang ZW, Peng HJ, Zhao M, Huang JQ. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: progress and prospects. Adv Func Mater. 2018;28(38):1707536

    Article  CAS  Google Scholar 

  75. Tian YX, Huang HW, Liu GX, Bi R, Zhang L. Metal-organic framework derived yolk-shell NiS2/carbon spheres for lithium-sulfur batteries with enhanced polysulfide redox kinetics. Chem Commun (Camb). 2019;55(22):3243

    Article  CAS  Google Scholar 

  76. Xi K, He DQ, Harris C, Wang YK, Lai C, Li HL, Coxon PR, Ding SJ, Wang C, Kumar RV. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv Sci (Weinh). 2019;6(6):1800815

    Article  CAS  Google Scholar 

  77. Angamuthu G, Babu DB, Ramesha K, Rangarajan V. MoS2 anchored carbon nitride based mesoporous material as a polysulfide barrier for high capacity lithium-sulfur battery. J Electroanal Chem. 2019;843:37

    Article  CAS  Google Scholar 

  78. Meng LJ, Ma Y, Si KP, Xu SY, Wang JL, Gong YJ. Recent advances of phase engineering in group VI transition metal dichalcogenides. Tungsten. 2019;1(1):46

    Article  Google Scholar 

  79. Yang SZ, Gong YJ, Manchanda P, Zhang YY, Ye GL, Chen SM, Song L, Pantelides ST, Ajayan PM, Chisholm MF. Rhenium-doped and stabilized MoS2 atomic layers with basal-plane catalytic activity. Adv Mater. 2018;30(51):1803477

    Article  CAS  Google Scholar 

  80. Eng AYS, Cheong JL, Lee SS. Controlled synthesis of transition metal disulfides (MoS2 and WS2) on carbon fibers: effects of phase and morphology toward lithium–sulfur battery performance. Appl Mater Today. 2019;16:529

    Article  Google Scholar 

  81. Lin HB, Yang LQ, Jiang X, Li GC, Zhang TR, Yao QF, Zheng GW, Lee JY. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ Sci. 2017;10(6):1476

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51872012), the National Key R&D Program of China (Grant No. 2018YFA900) and the Fundamental Research Funds for the Central Universities and the 111 Project (Grant No. B17002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ji Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, JH., Gong, YJ. Applications of transition-metal sulfides in the cathodes of lithium–sulfur batteries. Tungsten 2, 134–146 (2020). https://doi.org/10.1007/s42864-020-00046-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-020-00046-6

Keywords

Navigation