Skip to main content
Log in

Rare Earth and Critical Element Chemistry of the Volcanic Ash-fall Parting in the Fire Clay Coal, Eastern Kentucky, USA

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

In the search for rare earth and other critical elements in coal measures, the coals are emphasized with lesser consideration for the accompanying rocks. In this investigation, the focus is on a lanthanide-rich, 315–317 Ma (after Machlus et al., Chemical Geology, 539, art. no. 119485, 2020) volcanic ash-fall trachyandesite to trachyte tonstein which occurs in association with the Middle Pennsylvanian Duckmantian-age Fire Clay coal in eastern Kentucky. The tonstein was deposited largely during peat accumulation, although it is known to occur at the base of the coal or within the underclay. The mineralogy is dominated by kaolinite with illite and quartz as minor to major minerals. A number of accessory minerals, as detected by X-ray diffraction + Siroquant XRD software and scanning and transmission electron microscopy (S/TEM), include REE-bearing phosphates (apatite, crandallite, florencite, monazite), and Y-bearing zircon. The highest rare earth element + Y concentrations occur in the weathered tonsteins, probably due to the concentration of these minerals after weathering of kaolinite from the rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All of the data are available in the tables. The remaining samples are stored at the Kentucky Geological Survey’s Earth Analysis Research Laboratory in Lexington, Kentucky, USA and at the China University of Mining & Technology.

References

  • Aide, M. T., & Aide, C. (2012). Rare earth elements: Their importance in understanding soil genesis. ISRN Soil Science, 2012, article 783876. https://doi.org/10.5402/2012/783876

    Article  Google Scholar 

  • Andrews, W. M., Jr., Hower, J. C., & Hiett, J. K. (1994). Investigations of the Fire Clay coal bed, southeastern Kentucky, in the vicinity of sandstone washouts. International Journal of Coal Geology, 26, 95–115.

    Article  Google Scholar 

  • Arbuzov, S. I., Chekryzhov, I. Y., Verkhoturov, A. A., Spears, D. A., Melkiy, V. A., Zarubina, N. V., & Blokhin, M. G. (2023). Geochemistry and rare-metal potential of coals of the Sakhalin coal basin, Sakhalin island, Russia. International Journal of Coal Geology, 268, 104197.

    Article  Google Scholar 

  • ASTM Standard D3173/D3173M-17a. (2017). Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA, USA.

  • ASTM Standard D3174–12. (2018a). Annual Book of ASTM Standards. Test Method for Ash in the Analysis Sample of Coal and Coke. ASTM International, West Conshohocken, PA, USA.

  • ASTM Standard D4239–18e1. (2018b). Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM International, West Conshohocken, PA, USA.

  • Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 37–55.

    Article  Google Scholar 

  • Bish, D. L., & Von Dreele, R. B. (1989). Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays and Clay Minerals, 37, 289–296.

    Article  Google Scholar 

  • Bohor, B. F., & Triplehorn, D. M. (1981). Volcanic origin of the flint clay parting in the Hazard No. 4 (Fire Clay) coal bed of the Breathitt Formation in eastern Kentucky. In J.C.Cobb, et al., eds., Coal and coal-bearing rocks of eastern Kentucky. Geological Society of America Coal Geology Division Field Trip. Kentucky Geological Survey, Series XI, 49.

  • Bohor, B. F., & Triplehorn, D. M. (1993). Tonsteins: altered volcanic-ash layers in coal-bearing sequences. Geological Society of America Special Paper, 285, 44 pp.

  • Brownfield, M. E., Affolter, R. H., Cathcart, J. D., Johnson, S. Y., Brownfield, I. K., & Rice, C. A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal of Coal Geology, 63, 247–275.

    Article  Google Scholar 

  • Chesnut, D. R. (1985). Source of the volcanic ash deposit (flint clay) in the Fire Clay coal of the Appalachian Basin. Dixiéme Congrés International de Stratigraphie et de Géologie du Carbonifére, Madrid, 1983, Compte Rendu 1, 145-154.

  • Dai, S., Ren, D., Chou, C.-L., Li, S., & Jiang, Y. (2006). Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 66, 253–270.

    Article  Google Scholar 

  • Dai, S., Li, D., Chou, C.-L., Zhao, L., Zhang, Y., Ren, D., Ma, Y., & Sun, Y. (2008). Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74, 185–202.

    Article  Google Scholar 

  • Dai, S., Wang, X., Zhou, Y., Hower, J. C., Li, D., Chen, W., Zhu, X., & Zou, J. (2011). Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology, 282, 29–44.

    Article  Google Scholar 

  • Dai, S., Zhang, W., Seredin, V. V., Ward, C. R., Hower, J. C., Wang, X., Li, X., Song, W., Zhao, L., Kang, H., Zheng, L., & Zhou, D. (2013a). Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. International Journal of Coal Geology, 109–110, 77–100.

    Article  Google Scholar 

  • Dai, S., Zhang, W., Ward, C. R., Seredin, V. V., Hower, J. C., Li, X., Song, W., Wang, X., Kang, H., Zheng, L., Wang, P., & Zhou, D. (2013b). Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. International Journal of Coal Geology, 105, 60–84.

    Article  Google Scholar 

  • Dai, S., Chekryzhov, I. Y., Seredin, V. V., Nechaev, V. P., Graham, I. T., Hower, J. C., Ward, C. R., Ren, D., & Wang, X. (2016a). Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Research, 29, 60–82.

    Article  Google Scholar 

  • Dai, S., Graham, I. T., & Ward, C. R. (2016b). A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159, 82–95.

    Article  Google Scholar 

  • Dai, S., Xie, P., Jia, S., Ward, C. R., Hower, J. C., Yan, X., & French, D. (2017a). Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geology Reviews, 80, 1–17.

    Article  Google Scholar 

  • Dai, S., Xie, P., Ward, C. R., Yan, X., Guo, W., French, D., & Graham, I. T. (2017b). Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan coalfield, Guangxi, China. Ore Geology Reviews, 88, 235–250.

    Article  Google Scholar 

  • Dai, S., Ward, C. R., Graham, I. T., French, D., Hower, J. C., Zhao, L., & Wang, X. (2017c). Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Science Reviews, 175, 44–74.

    Article  Google Scholar 

  • Dai, S., Nechaev, V. P., Chekryzhov, IYu., Zhao, L., Vysotskiy, S. V., Graham, I., Ward, C., Ignatiev, A. V., Velivetskaya, T. A., Zhao, L., French, D., & Hower, J. C. (2018). A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 302–303, 359–369.

    Article  Google Scholar 

  • Davis, B. A., Rodrigues, S., Esterle, J. S., Nguyen, A. D., Duxbury, A. J., & Golding, S. D. (2021). Geochemistry of apatite in Late Permian coals, Bowen Basin, Australia. International Journal of Coal Geology, 237, 103708.

    Article  Google Scholar 

  • Davranche, M., Grybos, M., Gruau, G., Pédrot, M., Dia, A., & Marsac, R. (2011). Rare earth element patterns: A tool for identifying trace metal sources during wetland soil reduction. Chemical Geology, 284, 127–137.

    Article  Google Scholar 

  • Dopita, M., & Kralik, J. (1977). Coal Tonsteins in Ostrava-Karvina Coal Basin (Uhelne Tonsteiny Ostravsko-Karvinskeho Reviru). Ostrava, Czechoslovakia, 213 p.

  • Eble, C. F., Hower, J. C., & Andrews, W. M., Jr. (1994). Paleoecology of the Fire Clay coal bed in a portion of the Eastern Kentucky coal field. Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 287–305.

    Article  Google Scholar 

  • Eskenazy, G. (1978). Rare-earth elements in some coal basins of Bulgaria. Geologica Balcanica, 8, 81–88.

    Google Scholar 

  • Eskenazy, G. M. (1987a). Rare earth elements and yttrium in lithotypes of Bulgarian coals. Organic Geochemistry, 11, 83–89.

    Article  Google Scholar 

  • Eskenazy, G. M. (1987b). Zirconium and hafnium in Bulgarian coals. Fuel, 66, 1652–1657.

    Article  Google Scholar 

  • Eskenazy, G. M. (1987c). Rare earth elements in a sampled coal from the Pirin Deposit, Bulgaria. International Journal of Coal Geology, 7, 301–314.

    Article  Google Scholar 

  • Eskenazy, G. (1995). Geochemistry of rare earth elements in Bulgarian coals. Annuaire de l’Universite´ de Sofia ‘“St. Kliment Ohridski”’, Faculte´ de Geologie et Geographie. Livre 1-Geologie, 88, 39–65.

    Google Scholar 

  • Eskenazy, G. M. (1999). Aspects of the geochemistry of rare earth elements in coal: An experimental approach. International Journal of Coal Geology, 38, 285–295.

    Article  Google Scholar 

  • Eskenazy, G. M. (2015). Sorption of trace elements on xylain: An experimental study. International Journal of Coal Geology, 150–151, 166–169.

    Google Scholar 

  • Eskenazy, G. M., Mincheva, E. I., & Rousseva, D. P. (1986). Trace elements in lignite lithotypes from the Elhovo coal basin. Comptes Rendus Del’académie Bulgare Des Sciences, 39(10), 99–101.

    Google Scholar 

  • Given, P. H. (1984). An essay on the organic geochemistry of coal. Academic Press. In Coal Science 3, (63–251, 339–341). Academic Press, New York.

  • Greb, S. F., Eble, C. F., & Hower, J. C. (1999). Depositional history of the Fire Clay coal bed (Late Duckmantian), eastern Kentucky, USA. International Journal of Coal Geology, 40, 255–280.

    Article  Google Scholar 

  • Greb, S. F., Eble, C. F., Hower, J. C., & Andrews, W. M. (2002). Multiple-bench architecture and interpretations of original mire phases in Middle Pennsylvanian coal seams: Examples from the Eastern Kentucky coal field. International Journal of Coal Geology, 49, 147–175.

    Article  Google Scholar 

  • Guerra-Sommer, M., Cazzulo-Klepzig, M., Santos, J. O. S., Hartmann, L. A., Ketzer, J. M., & Formoso, M. L. L. (2008). Radiometric age determination of tonsteins and stratigraphic constraints for the Lower Permian coal succession in southern Paraná Basin, Brazil. International Journal of Coal Geology, 74, 13–27.

    Article  Google Scholar 

  • Hatcher, P. G., & Clifford, D. J. (1996). The organic geochemistry of coal: From plant materials to coal. Organic Geochemistry, 27, 251–274.

    Article  Google Scholar 

  • Hou, Y., Dai, S., Nechaev, V. P., Finkelman, R. B., Wang, H., Zhang, S., & Di, S. (2023). Mineral matter in the Pennsylvanian coal from the Yangquan Mining District, northeastern Qinshui Basin, China: Enrichment of critical elements and a Se-Mo-Pb-Hg assemblage. International Journal of Coal Geology, 266, 104178.

    Article  Google Scholar 

  • Hower, J. C., Andrews, W. M., Jr., Wild, G. D., Eble, C. F., Dulong, F. T., & Salter, T. L. (1994). Coal quality trends for the Fire Clay coal bed, southeastern Kentucky. Journal of Coal Quality, 13, 13–26.

    Google Scholar 

  • Hower, J. C., Berti, D., Hochella, M. F., Jr., & Mardon, S. M. (2018). Rare Earth minerals in a “no tonstein” section of the Dean (Fire Clay) coal, Knox County, Kentucky. International Journal of Coal Geology, 193, 73–86. https://doi.org/10.1016/j.coal.2018.05.001

    Article  Google Scholar 

  • Hower, J. C., & Bland, A. E. (1989). Geochemistry of the Pond Creek Coal Bed, Eastern Kentucky Coalfield. International Journal of Coal Geology, 11, 205–226.

    Article  Google Scholar 

  • Hower, J. C., Eble, C. F., Backus, J. S., Xie, P., Liu, J., Fu, B., & Hood, M. M. (2020). Aspects of rare earth element enrichment in central appalachian coals. Applied Geochemistry, 120, 104676. https://doi.org/10.1016/j.apgeochem.2020.104676

    Article  Google Scholar 

  • Hower, J. C., Eble, C. F., Dai, S., & Belkin, H. E. (2016). Distribution of rare earth elements in eastern Kentucky coals: Indicators of multiple modes of enrichment? International Journal of Coal Geology, 160–161, 73–81.

    Article  Google Scholar 

  • Hower, J. C., Eble, C. F., & Mastalerz, M. (2022). Petrology of the fire clay coal, bear branch, Perry County, Kentucky. International Journal of Coal Geology, 249, 103891.

    Article  Google Scholar 

  • Hower, J. C., Ruppert, L. F., & Eble, C. F. (1999). Lanthanide, Yttrium, and Zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. International Journal of Coal Geology, 39, 141–153.

    Article  Google Scholar 

  • Jiu, B., Huang, W., Spiro, B., Hao, R., Mu, N., Wen, L., & Hao, H. (2023). Distribution of Li, Ga, Nb, and REEs in coal as determined by LA-ICP-MS imaging: A case study from Jungar coalfield, Ordos Basin, China. International Journal of Coal Geology, 267, 104184.

    Article  Google Scholar 

  • Karayigit, A. I., Yerin, Ü. O., Oskay, R. G., Bulut, Y., & Córdoba, P. (2021). Enrichment and distribution of elements in the middle Miocene coal seams in the Orhaneli coalfield (NW Turkey). International Journal of Coal Geology, 247, 103854.

    Article  Google Scholar 

  • Ketris, M. P., & Yudovich, Ya. .E. (2009). Estimations of Clarkes for carbonaceous biolithes: World average for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135–148.

    Article  Google Scholar 

  • Kokowska-Pawłowska, M., & Nowak, J. (2013). Phosphorus minerals in tonstein; coal seam 405 at Sośnica-Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63, 271–281.

    Article  Google Scholar 

  • Liu, J., Dai, S., Song, H., Nechaev, V. P., French, D., Spiro, B. F., Graham, I. T., Hower, J. C., Shao, L., & Zhao, J. (2021). Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield, western Guizhou, China. International Journal of Coal Geology, 247, 103855.

    Article  Google Scholar 

  • Lyons, P. C., Spears, D. A., Outerbridge, W. F., Congdon, R. D., & Evans, H. T. (1994). Euramerican tonsteins: Overview, magmatic origin, and depositional-tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 113–134.

    Article  Google Scholar 

  • Lyons, P. C., Krogh, T. E., Kwok, Y. Y., Davis, D. W., Outerbridge, W. F., & Evans, H. T., Jr. (2006). Radiometric ages of the Fire Clay tonstein [Pennsylvanian (Upper Carboniferous), Westphalian, Duckmantian]: A comparison of U-Pb zircon single-crystal ages and 40Ar/39Ar sanidine single-crystal plateau ages. International Journal of Coal Geology, 67, 259–266.

    Article  Google Scholar 

  • Lyons, P. C., Outerbridge, W. F., Triplehorn, D. M., Evans, H. T., Jr., Congdon, R. D., Capiro, M., Hess, J. C., & Nash, W. P. (1992). An Appalachian isochron: A kaolinized Carboniferous air-fall volcanic-ash deposit (tonstein). Geological Society of America Bulletin, 104, 1515–1527.

    Article  Google Scholar 

  • Machlus, M. L., Shea, E. K., Hemming, S. R., Ramezani, J., & Rasbury, E. T. (2020). An assessment of sanidine from the Fire Clay tonstein as a Carboniferous 40Ar/39Ar monitor standard and for inter-method comparison to U-Pb zircon geochronology. Chemical Geology, 539, art. no. 119485.

    Article  Google Scholar 

  • Mardon, S. M., & Hower, J. C. (2004). Impact of coal properties on coal combustion by-product quality: Examples from a Kentucky power plant. International Journal of Coal Geology, 59, 153–169.

    Article  Google Scholar 

  • Nechaev, V. P., Dai, S., Chekryzhov, I. Y., Tarasenko, I. A., Zin’kov, A. V., & Moore, T. A. (2022). Origin of the tuff parting and associated enrichments of Zr, REY, redox-sensitive and other elements in the Early Miocene coal of the Siniy Utyes Basin, southwestern Primorye, Russia. International Journal of Coal Geology, 250, 103913.

    Article  Google Scholar 

  • Pédrot, M., Dia, A., & Davranche, M. (2010). Dynamic structure of humic substances: Rare earth elements as a fingerprint. Journal of Colloid and Interface Science, 345, 206–213.

    Article  Google Scholar 

  • Rao, P. D., & Walsh, D. E. (1997). Nature and distribution of phosphorus minerals in Cook Inlet coals, Alaska. International Journal of Coal Geology, 33, 19–42.

    Article  Google Scholar 

  • Rice, C. L., Belkin, H. E., Henry, T. W., Zartman, R. E., & Kunk, M. J. (1994). The Pennsylvanian Fire Clay tonstein of the Appalachian Basin – Its distribution, biostratigraphy, and mineralogy. In: C.L. Rice, ed., Elements of Pennsylvanian Stratigraphy, Central Appalachian Basin. Geological Society of America Special Paper, 294, 87–104.

  • Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71.

    Article  Google Scholar 

  • Robl, T. L, & Bland, A. E. (1977). The distribution of aluminum in shales associated with the major economic coal seams of eastern Kentucky. Proceedings, Kentucky Coal Refuse Disposal and Utilization Symposium, 3rd, 97.

  • Seredin, V. V. (1996). Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology, 30, 101–129.

    Article  Google Scholar 

  • Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94, 67–93.

    Article  Google Scholar 

  • Shen, M., Dai, S., Graham, I. T., Nechaev, V. P., French, D., Zhao, F., Shao, L., Liu, S., Zuo, J., Zhao, J., Chen, K., & Xie, X. (2021). Mineralogical and geochemical characteristics of altered volcanic ashes (tonsteins and K-bentonites) from the latest Permian coal-bearing strata of western Guizhou Province, southwestern China. International Journal of Coal Geology, 237, 103707.

    Article  Google Scholar 

  • Spears, D. A. (2012). The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks. International Journal of Coal Geology., 94, 22–31.

    Article  Google Scholar 

  • Sutcu, E. C., Şentürk, S., Kapıcı, K., & Gökçe, N. (2021). Mineral and rare earth element distribution in the Tunçbilek coal seam, Kütahya, Turkey. International Journal of Coal Geology, 245, 103820.

    Article  Google Scholar 

  • Taylor, J. C. (1991). Computer programs for standardless quantitative analysis of minerals using the full diffraction profile. Powder Diffraction, 6, 2–9.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust—Its Composition and Evolution (p. 312). Blackwell Scientific Publishers.

    Google Scholar 

  • Triplehorn, D. M., & Bohor, B. F. (1981). Altered volcanic ash partings in the C coal, Ferron Sandstone Member of the Mancos Shale, Emery County, Utah. In: US. Geological Survey Open-File Report 81–775, (43 p.).

  • Vergunov, A. V., Arbuzov, S. I., Soktoev, B. R., Ilenok, S. S., & Chekryzhov, IYu. (2022). Mineralogy and geochemistry of tonstein from coal seam Novy-1A, Kharanor deposit (Zabaykalsky Krai). Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 333, 15–26.

    Google Scholar 

  • Ward, C.R., Taylor, J.C., Matulis, C.E., & Dale, L.S., (2001). Quantification of mineral matter in the Argonne Premium coals using interactive Rietveld-based x-ray diffraction. International Journal of Coal Geology, 46, 67–82.

  • Ward, C. R. (2002). Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology, 50, 135–168.

    Article  Google Scholar 

  • Ward, C. R. (2016). Analysis, origin and significance of mineral matter in coal: An updated review. International Journal of Coal Geology, 165, 1–27.

    Article  Google Scholar 

  • Weaver, C. E. (1963). Interpretative value of heavy minerals from bentonites. Journal of Sedimentary Petrology, 33, 343–349.

    Google Scholar 

  • Williams-Jones, A. E., Migdisov, A. A., & Samson, I. M. (2012). Hydrothermal mobilization of the Rare Earth elements – a tale of “Ceria” and “Yttria.” Elements, 8, 355–360.

    Article  Google Scholar 

  • Wilson, A. A., Sergeant, G. A., Young, B. R., & Harrison, R. K. (1966). The Rowhurst tonstein, North Staffordshire, and the occurrence of crandallite. Yorkshire Geological Society Proceedings, 35, 421–427.

    Article  Google Scholar 

  • Winchester, J. A., & Floyd, P. A. (1977). Geochemical differentiation of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.

    Article  Google Scholar 

  • Zhao, L., Ward, C. R., French, D., & Graham, I. T. (2012). Mineralogy of the volcanic influenced Great Northern coal seam in the Sydney Basin, Australia. International Journal of Coal Geology, 94, 94–110.

    Article  Google Scholar 

  • Zhang, Z., Lv, D., Hower, J. C., Wang, L., Shen, Y., Zhang, A., Xu, J., & Gao, J. (2023). Geochronology, mineralogy, and geochemistry of tonsteins from the Pennsylvanian Taiyuan Formation of the Jungar Coalfield, Ordos Basin, North China. International Journal of Coal Geology, 267, 104183.

    Article  Google Scholar 

  • Zhang, Z., Lv, D., Wang, C., Hower, J. C., Raji, M., Wang, T., Zhang, J., & Yang, Y. (2022). Mineralogical and geochemical characteristics of tonsteins from the Middle Jurassic Yan’an Formation, Ordos Basin, North China. International Journal of Coal Geology, 253, 103968.

    Article  Google Scholar 

Download references

Acknowledgements

The samples were collected during the period 1990–1992 by Eble and Hower and colleagues. The collection effort and the supporting chemical analyses were supported by grants to the Kentucky Geological Survey and to the University of Kentucky Center for Applied Energy Research from the Commonwealth of Kentucky. The analytical work at the China University of Mining & Technology was supported by the National Key Research & Development Program of China (No. 2021YFC2902003), the National Natural Science Foundation of China (No. 42272194), and the 111 Project (No. B17042).

Funding

As stated in the acknowledgments.

Author information

Authors and Affiliations

Authors

Contributions

Liu, Dai, Dong, Gao – chemical, mineralogical, and SEM analyses; Berti – TEM analysis; Eble and Hower – collection of samples; Liu, Dai, Berti, Eble, Hower – writing of manuscript.

Corresponding author

Correspondence to James C. Hower.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare no conflict of interest or competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Dai, S., Berti, D. et al. Rare Earth and Critical Element Chemistry of the Volcanic Ash-fall Parting in the Fire Clay Coal, Eastern Kentucky, USA. Clays Clay Miner. 71, 309–339 (2023). https://doi.org/10.1007/s42860-023-00237-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00237-5

Keywords

Navigation