Skip to main content
Log in

Enhanced electrosorption of NaCl and nickel(II) in capacitive deionization by CO2 activation coconut-shell activated carbon

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Enhancing the capacitive deionization performance requires the inner structure expansion of porous activated carbon to facilitate the charge storage and electrolyte penetration. This work aimed to modify the porosity of coconut-shell activated carbon (AC) through CO2 activation at high temperature. The electrochemical performance of CO2-activated AC electrodes was evaluated by cyclic voltammetry, charge/discharge test and electrochemical impedance spectroscopy, which exhibited that AC-800 had the superior performance with the highest capacitance of 112 F/g at the rate of 0.1 A/g and could operate for up to 4000 cycles. Furthermore, in the capacitive deionization, AC-800 showed salt removal of 9.15 mg/g with a high absorption rate of 2.8 mg/g min and Ni(II) removal of 5.32 mg/g with a rate close to 1 mg/g.min. The results promote the potential application of CO2-activated AC for desalination as well as Ni-removal through capacitance deionization (CDI) technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zaid K, Suriani AB (2017) A review on electrode materials used in capacitive deionization processes for water treatment applications. Sci Int 29:285–289

    CAS  Google Scholar 

  2. Hemmatifar A, Palko JW, Stadermann M, Santiago JG (2016) Energy breakdown in capacitive deionization. Water Res 104:303–311. https://doi.org/10.1016/j.watres.2016.08.020

    Article  CAS  Google Scholar 

  3. Qasim M, Badrelzaman M, Darwish NN et al (2019) Reverse osmosis desalination: A state-of-the-art review. Desalination 459:59–104. https://doi.org/10.1016/j.desal.2019.02.008

    Article  CAS  Google Scholar 

  4. Sufiani O, Elisadiki J, Machunda RL, Jande YAC (2019) Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. J Electroanal Chem 848:113328. https://doi.org/10.1016/j.jelechem.2019.113328

    Article  CAS  Google Scholar 

  5. Qin M, Deshmukh A, Epsztein R et al (2019) Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination 455:100–114. https://doi.org/10.1016/j.desal.2019.01.003

    Article  CAS  Google Scholar 

  6. Foo KY, Hameed BH (2009) A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects. J Hazard Mater 170:552–559. https://doi.org/10.1016/j.jhazmat.2009.05.057

    Article  CAS  Google Scholar 

  7. Daer S, Kharraz J, Giwa A, Hasan SW (2015) Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367:37–48. https://doi.org/10.1016/j.desal.2015.03.030

    Article  CAS  Google Scholar 

  8. Thamilselvan A, Nesaraj AS, Noel M (2016) Review on carbon-based electrode materials for application in capacitive deionization process. Int J Environ Sci Technol 13:2961–2976. https://doi.org/10.1007/s13762-016-1061-9

    Article  CAS  Google Scholar 

  9. Lado JJ, Zornitta RL, Calvi FA et al (2017) Enhanced capacitive deionization desalination provided by chemical activation of sugar cane bagasse fly ash electrodes. J Anal Appl Pyrol 126:143–153. https://doi.org/10.1016/j.jaap.2017.06.014

    Article  CAS  Google Scholar 

  10. Huynh LTN, Pham TN, Nguyen TH et al (2020) Coconut shell-derived activated carbon and carbon nanotubes composite: a promising candidate for capacitive deionization electrode. Synth Met 265:116415. https://doi.org/10.1016/j.synthmet.2020.116415

    Article  CAS  Google Scholar 

  11. Kim M, Lim H, Xu X et al (2021) Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous Mesoporous Mater 312:110757. https://doi.org/10.1016/j.micromeso.2020.110757

    Article  CAS  Google Scholar 

  12. Itoi H, Hasegawa H, Iwata H, Ohzawa Y (2018) Non-polymeric hybridization of a TEMPO derivative with activated carbon for high-energy-density aqueous electrochemical capacitor electrodes. Sustain Energy Fuels 2:558–565. https://doi.org/10.1039/C7SE00541E

    Article  CAS  Google Scholar 

  13. Itoi H, Suzuki R, Miyaji M et al (2021) Hybridization of a polymer inside the pores of activated carbon and pore structural characterization. ACS Appl Polym Mater 3:3603–3611. https://doi.org/10.1021/acsapm.1c00498

    Article  CAS  Google Scholar 

  14. Kang C-S, Ko Y-I, Fujisawa K et al (2020) Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications. Carbon Lett 30:527–534. https://doi.org/10.1007/s42823-020-00122-4

    Article  Google Scholar 

  15. Turmuzi M, Daud WRW, Tasirin SM et al (2004) Production of activated carbon from candlenut shell by CO2 activation. Carbon 42:453–455. https://doi.org/10.1016/j.carbon.2003.11.015

    Article  CAS  Google Scholar 

  16. Guo S, Peng J, Li W et al (2009) Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255:8443–8449. https://doi.org/10.1016/j.apsusc.2009.05.150

    Article  CAS  Google Scholar 

  17. Şahin Ö, Yardim Y, Baytar O, Saka C (2020) Enhanced electrochemical double-layer capacitive performance with CO2 plasma treatment on activated carbon prepared from pyrolysis of pistachio shells. Int J Hydrog Energy 45:8843–8852. https://doi.org/10.1016/j.ijhydene.2020.01.128

    Article  CAS  Google Scholar 

  18. Zhang Y, Chen L, Mao S et al (2019) Fabrication of porous graphene electrodes via CO2 activation for the enhancement of capacitive deionization. J Colloid Interface Sci 536:252–260. https://doi.org/10.1016/j.jcis.2018.10.063

    Article  CAS  Google Scholar 

  19. Rashidi NA, Yusup S (2017) A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem Eng J 314:277–290. https://doi.org/10.1016/j.cej.2016.11.059

    Article  CAS  Google Scholar 

  20. Ogungbenro AE, Quang DV, Al-Ali K, Abu-Zahra MRM (2017) Activated carbon from date seeds for CO2 capture applications. Energy Procedia 114:2313–2321. https://doi.org/10.1016/j.egypro.2017.03.1370

    Article  CAS  Google Scholar 

  21. Nowicki P, Pietrzak R, Wachowska H (2010) Sorption properties of active carbons obtained from walnut shells by chemical and physical activation. Catal Today 150:107–114. https://doi.org/10.1016/j.cattod.2009.11.009

    Article  CAS  Google Scholar 

  22. Pietrzak R (2010) Sawdust pellets from coniferous species as adsorbents for NO2 removal. Biores Technol 101:907–913. https://doi.org/10.1016/j.biortech.2009.09.017

    Article  CAS  Google Scholar 

  23. Ryu SK, Jin H, Gondy D et al (1993) Activation of carbon fibres by steam and carbon dioxide. Carbon 31:841–842. https://doi.org/10.1016/0008-6223(93)90025-6

    Article  CAS  Google Scholar 

  24. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  25. Chen R, Sheehan T, Ng JL et al (2020) Capacitive deionization and electrosorption for heavy metal removal. Environ Sci Water Res Technol 6:258–282. https://doi.org/10.1039/C9EW00945K

    Article  Google Scholar 

  26. Nguyen TT, Huynh LTN, Pham TN et al (2021) Enhanced capacitive deionization performance of activated carbon derived from coconut shell electrodes with low content carbon nanotubes–graphene synergistic hybrid additive. Mater Lett 292:129652. https://doi.org/10.1016/j.matlet.2021.129652

    Article  CAS  Google Scholar 

  27. Le VH, Huynh LTN, Tran TN et al (2021) Comparative desalination performance of activated carbon from coconut shell waste/carbon nanotubes composite in batch mode and single-pass mode. J Appl Electrochem 51:1313–1322. https://doi.org/10.1007/s10800-021-01575-9

    Article  CAS  Google Scholar 

  28. Jiang C, Yakaboylu GA, Yumak T et al (2020) Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renew Energy 155:38–52. https://doi.org/10.1016/j.renene.2020.03.111

    Article  CAS  Google Scholar 

  29. Yang K, Peng J, Xia H et al (2010) Textural characteristics of activated carbon by single step CO2 activation from coconut shells. J Taiwan Inst Chem Eng 41:367–372. https://doi.org/10.1016/j.jtice.2009.09.004

    Article  CAS  Google Scholar 

  30. Dantas TLP, Rodrigues AE, Moreira RFPM (2012) Separation of carbon dioxide from flue gas using adsorption on porous solids. In: Separation of carbon dioxide from flue gas using adsorption on porous solids. IntechOpen

  31. Reddy KSK, Al Shoaibi A, Srinivasakannan C (2012) A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. New Carbon Mater 27:344–351. https://doi.org/10.1016/S1872-5805(12)60020-1

    Article  CAS  Google Scholar 

  32. Ghouma I, Jeguirim M, Sager U et al (2017) The potential of activated carbon made of agro-industrial residues in NOx immissions abatement. Energies 10:1508. https://doi.org/10.3390/en10101508

    Article  CAS  Google Scholar 

  33. Wenzhong S, Zhijie L, Yihong L (2007) Surface chemical functional groups modification of porous carbon. Recent Pat Chem Eng 1:27–40

    Google Scholar 

  34. Allwar A, Noor AM, Nawi MAM (2011) Preparation and characterization of microporous activated carbon from oil palm shell by physical activation using purified nitrogen. EKSAKTA: J Sci Data Anal 12(2):1–3

    Article  Google Scholar 

  35. Yeh C-L, Hsi H-C, Li K-C, Hou C-H (2015) Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination 367:60–68. https://doi.org/10.1016/j.desal.2015.03.035

    Article  CAS  Google Scholar 

  36. Aslan M, Zeiger M, Jäckel N et al (2016) Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes. J Phys Condens Matter 28:114003. https://doi.org/10.1088/0953-8984/28/11/114003

    Article  CAS  Google Scholar 

  37. Sheng K, Sun Y, Li C et al (2012) Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci Rep 2:247. https://doi.org/10.1038/srep00247

    Article  CAS  Google Scholar 

  38. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J Electrochem Soc 150:A292. https://doi.org/10.1149/1.1543948

    Article  CAS  Google Scholar 

  39. Mei B-A, Munteshari O, Lau J et al (2018) Physical interpretations of nyquist plots for EDLC electrodes and devices. J Phys Chem C 122:194–206. https://doi.org/10.1021/acs.jpcc.7b10582

    Article  CAS  Google Scholar 

  40. Sidhu NK, Rastogi AC (2016) Bifacial carbon nanofoam-fibrous PEDOT composite supercapacitor in the 3-electrode configuration for electrical energy storage. Synth Met 219:1–10. https://doi.org/10.1016/j.synthmet.2016.04.012

    Article  CAS  Google Scholar 

  41. Manoharan S, Sahoo S, Pazhamalai P, Kim SJ (2018) Supercapacitive properties of activated carbon electrode using ammonium based proton conducting electrolytes. Int J Hydrog Energy 43:1667–1674. https://doi.org/10.1016/j.ijhydene.2017.11.121

    Article  CAS  Google Scholar 

  42. Gaikwad MS, Balomajumder C (2017) Tea waste biomass activated carbon electrode for simultaneous removal of Cr(VI) and fluoride by capacitive deionization. Chemosphere 184:1141–1149. https://doi.org/10.1016/j.chemosphere.2017.06.074

    Article  CAS  Google Scholar 

  43. Hai A, Bharath G, Babu KR et al (2019) Date seeds biomass-derived activated carbon for efficient removal of NaCl from saline solution. Process Saf Environ Prot 129:103–111. https://doi.org/10.1016/j.psep.2019.06.024

    Article  CAS  Google Scholar 

  44. Elisadiki J, Kibona TE, Machunda RL et al (2020) Biomass-based carbon electrode materials for capacitive deionization: a review. Biomass Convers Biorefin 10:1327–1356. https://doi.org/10.1007/s13399-019-00463-9

    Article  CAS  Google Scholar 

  45. Zeng A, Shrestha M, Wang K et al (2017) Plasma treated active carbon for capacitive deionization of saline water. J Nanomater 2017:e1934724. https://doi.org/10.1155/2017/1934724

    Article  CAS  Google Scholar 

  46. Chang L, Hang HuY (2019) 3D Channel-structured graphene as efficient electrodes for capacitive deionization. J Colloid Interface Sci 538:420–425. https://doi.org/10.1016/j.jcis.2018.11.105

    Article  CAS  Google Scholar 

  47. Agartan L, Akuzum B, Mathis T et al (2018) Influence of thermal treatment conditions on capacitive deionization performance and charge efficiency of carbon electrodes. Sep Purif Technol 202:67–75. https://doi.org/10.1016/j.seppur.2018.02.039

    Article  CAS  Google Scholar 

  48. Zornitta RL, Srimuk P, Lee J et al (2018) Charge and potential balancing for optimized capacitive deionization using lignin-derived, low-cost activated carbon electrodes. Chemsuschem 11:2101–2113. https://doi.org/10.1002/cssc.201800689

    Article  CAS  Google Scholar 

  49. Liu L, Qiu G, Suib SL et al (2017) Enhancement of Zn2+ and Ni2+ removal performance using a deionization pseudocapacitor with nanostructured birnessite and its carbon nanotube composite electrodes. Chem Eng J 328:464–473. https://doi.org/10.1016/j.cej.2017.07.066

    Article  CAS  Google Scholar 

  50. Iftekhar S, Farooq MU, Sillanpää M et al (2017) Removal of Ni(II) using multi-walled carbon nanotubes electrodes: relation between operating parameters and capacitive deionization performance. Arab J Sci Eng 42:235–240. https://doi.org/10.1007/s13369-016-2301-5

    Article  CAS  Google Scholar 

  51. Li P, Gui Y, Blackwood DJ (2018) Development of a nanostructured α-MnO2/carbon paper composite for removal of Ni2+/Mn2+ ions by electrosorption. ACS Appl Mater Interfaces 10:19615–19625. https://doi.org/10.1021/acsami.8b02471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University, Ho Chi Minh City (VNU-HCM) under Grant number of 562-2020-18-06.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 512 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, L.T.N., Tran, T.N., Ho, T.T.N. et al. Enhanced electrosorption of NaCl and nickel(II) in capacitive deionization by CO2 activation coconut-shell activated carbon. Carbon Lett. 32, 1531–1540 (2022). https://doi.org/10.1007/s42823-022-00387-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00387-x

Keywords

Navigation