Skip to main content
Log in

Small gas adsorption on Co–N4 porphyrin-like CNT for sensor exploitation: a first-principles study

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Using first-principles theory, we investigated the adsorption performance of CoN4-CNT towards six small gases including NO, O2, H2, H2S, NH3, and CH4, for exploiting its potential application for chemical gas sensors. The frontier molecular orbital theory was conducted to help understand the conductivity change of the proposed material at the presence of gas molecules. The desorption behavior of gas molecules from CoN4-CNT surface at ambient temperature was analyzed as well to determine its suitability for sensing application. Results show that CoN4-CNT is a promising material for O2 and NH3 sensing due to their desirable adsorption and desorption behaviors while not appropriate for sensing NO due to the poor desorption ability and for sensing CH4 and H2 given the poor adsorption behavior. Our calculation would provide a first insight into the CoN4-embedded effect on the structural and electronic properties of single-walled CNT, and shed light on the application of CoN4-CNT towards sensing of small gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Choi CH, Chung MW, Park SH, Woo SI (2013) Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media[J]. Phys Chem Chem Phys 15(6):1802–1805

    CAS  Google Scholar 

  2. Gui Y, Tang C, Zhou Q, Xu L, Zhao Z, Zhang X (2018) The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: a first-principle study[J]. Appl Surf Sci 440:846–852

    CAS  Google Scholar 

  3. Chai GL, Guo ZX (2016) Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction[J]. Chem Sci 7(2):1268–1275

    CAS  Google Scholar 

  4. Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications[J]. Carbon 48(3):575–586

    CAS  Google Scholar 

  5. Villalpando-Paez F, Zamudio A, Elias AL, Son H, Barros EB, Chou SG, Kim YA, Muramatsu H, Hayashi T, Kong J (2006) Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes[J]. Chem Phys Lett 424(4–6):345–352

    CAS  Google Scholar 

  6. Liu Y, Jin Z, Wang J, Cui R, Sun H, Peng F, Wei L, Wang Z, Liang X, Peng L (2015) Nitrogen-doped single-walled carbon nanotubes grown on substrates: evidence for framework doping and their enhanced properties[J]. Adv Func Mater 21(5):986–992

    Google Scholar 

  7. Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, Lee GY, Kim SO (2014) Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction[J]. Nano Lett 14(3):1228–1233

    CAS  Google Scholar 

  8. Lu Z, Yang M, Ma D, Lv P, Li S, Yang Z, Zhansheng L, Yang M, Ma D, Lv P (2017) CO oxidation on Mn-N4 porphyrin-like carbon nanotube: a DFT-D study[J]. Appl Surf Sci 426:1232–1240

    CAS  Google Scholar 

  9. Orellana Walter (2013) Catalytic properties of transition metal–N4 moieties in graphene for the oxygen reduction reaction: evidence of spin-dependent mechanisms[J]. J Phys Chem C 117(19):9812–9818

    CAS  Google Scholar 

  10. Kattel S, Atanassov P, Kiefer B (2014) A density functional theory study of oxygen reduction reaction on non-PGM Fe-Nx-C electrocatalysts[J]. Phys Chem Chem Phys 16(27):13800

    CAS  Google Scholar 

  11. Lu Z, Guoliang X, He C, Wang T, Yang L, Yang Z, Ma D (2015) Novel catalytic activity for oxygen reduction reaction on MnN4 embedded graphene: a dispersion-corrected density functional theory study[J]. Carbon 84(1):500–508

    CAS  Google Scholar 

  12. Lin IH, Lu YH, Chen HT (2016) Nitrogen-doped carbon nanotube as a potential metal-free catalyst for CO oxidation[J]. Phys Chem Chem Phys 18(17):12093–12100

    CAS  Google Scholar 

  13. Zhang P, Chen XF, Lian JS, Jiang Q (2012) Structural selectivity of CO oxidation on Fe/N/C catalysts[J]. J Phys Chem C 116(33):17572–17579

    CAS  Google Scholar 

  14. Gao F, Zhao GL, Wang Z, Bagayoko D, Liu DJ (2015) Catalytic reaction on FeN 4/C site of nitrogen functionalized carbon nanotubes as cathode catalyst for hydrogen fuel cells [J]. Catal Commun 62:79–82

    CAS  Google Scholar 

  15. Jiménez-Ramírez LE, Camachomojica DC, Muñoz-Sandoval E, López-Urías F (2017) First-principles study of transition metal adsorbed on porphyrin-like motifs in pyrrolic nitrogen-doped carbon nanostructures[J]. Carbon 116:381–390

    Google Scholar 

  16. Cui H, Zhang X, Zhang J, Tang J (2018) Adsorption behaviour of SF6 decomposed species onto Pd4-decorated single-walled CNT: a DFT study[J]. Mol Phys 53:1–7

    Google Scholar 

  17. Cui H, Zhang X, Zhang J, Ali Mehmood M (2018) Interaction of CO and CH4 adsorption with noble metal (Rh, Pd, and Pt)-decorated N3-CNTs: a first-principles study[J]. ACS Omega 3(12):16892–16898

    CAS  Google Scholar 

  18. Cui H, Zhang X, Chen D, Tang J (2018) Pt & Pd decorated CNT as a workable media for SOF2 sensing: a DFT study[J]. Appl Surf Sci 471:335–341

    Google Scholar 

  19. Li X, Park S, Popov BN (2010) Highly stable Pt and PtPd hybrid catalysts supported on a nitrogen-modified carbon composite for fuel cell application [J]. J Power Sour 195(2):445–452

    CAS  Google Scholar 

  20. Yeung CS, Liu LV, Wang YA (2008) Adsorption of small gas molecules onto Pt-doped single-walled carbon nanotubes[J]. J Phys Chem C 112(19):199–206

    Google Scholar 

  21. Zhou X, Tian WQ, Wang XL (2010) Adsorption sensitivity of Pd-doped SWCNTs to small gas molecules[J]. Sens Actuators B Chem 151(1):56–64

    CAS  Google Scholar 

  22. Cui H, Zhang X, Zhang G, Tang J (2019) Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method[J]. Appl Surf Sci 470:1035–1042

    CAS  Google Scholar 

  23. Li S, Jiang J (2017) Adsorption behavior analyses of several small gas molecules onto Rh-doped single-walled carbon nanotubes[J]. Appl Phys A 123(10):669

    Google Scholar 

  24. Gao S, Li G-D, Liu Y, Chen H, Feng L-L, Wang Y, Yang M, Wang D, Wang S, Zou X (2015) Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons[J]. Nanoscale 7(6):2306–2316

    CAS  Google Scholar 

  25. Zhang X, Chen D, Cui H, Dong X, Xiao S, Tang J (2017) Understanding of SF6 decompositions adsorbed on cobalt-doped SWCNT: a DFT study[J]. Appl Surf Sci 420:371–382

    CAS  Google Scholar 

  26. Delley B (2000) From molecules to solids with the DMol3 approach[J]. J Chem Phys 113(18):7756–7764

    CAS  Google Scholar 

  27. Cui H, Zhang X, Chen D, Tang J (2018) Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: a DFT study[J]. Appl Surf Sci 447:594–598

    CAS  Google Scholar 

  28. Delley B (2002) Hardness conserving semilocal pseudopotentials[J]. Phys Rev B: Condens Matter 66(15):155125

    Google Scholar 

  29. Tkatchenko A, Di Stasio RA Jr, Head-Gordon M, Scheffler M (2009) Dispersion-corrected Møller-Plesset second-order perturbation theory[J]. J Chem Phys 131(9):171

    Google Scholar 

  30. Li K, Wang W, Cao D (2011) Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing[J]. Sens Actuators B Chem 159(1):171–177

    CAS  Google Scholar 

  31. Wang R, Zhang D, Zhang Y, Liu C (2006) Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde[J]. J Phys Chem B 110(37):18267–18271

    CAS  Google Scholar 

  32. Cui H, Zhang X, Xiao H, Tang J (2018) Theoretical study on electrical behavior of carbon chain inserted single-walled carbon nanotubes compared with Pt doped one[J]. Carbon Lett 25(1):55–59

    Google Scholar 

  33. Cui H, Zhang X, Yao Q, Miao Y, Tang J (2018) Rh-doped carbon nanotubes as a superior media for the adsorption of O2 and O3 molecules: a density functional theory study[J]. Carbon Lett 28(1):55–59

    Google Scholar 

  34. Feng Y, Li F, Hu Z, Luo X, Zhang L, Zhou XF, Wang HT, Xu JJ, Wang EG (2012) Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction[J]. Phys Rev B Condens Matter 85(15):155454

    Google Scholar 

  35. Boys SF, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Mol Phys 19(1):553–566

    Google Scholar 

  36. Ao ZM, Yang J, Li S, Jiang Q (2008) Enhancement of CO detection in Al doped graphene[J]. Chem Phys Lett 461(4):276–279

    CAS  Google Scholar 

  37. Kaniyoor A, Imran JR, Arockiadoss T, Ramaprabhu S (2009) Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor[J]. Nanoscale 1(3):382

    CAS  Google Scholar 

  38. Pyykkö P, Atsumi M (2009) Molecular single-bond covalent radii for elements 1–118[J]. Chemistry 15(1):186–197

    Google Scholar 

  39. Shou R, Hata K, Nakano M, Suehiro J (2013) Chemical detection of SF6 decomposition products generated by AC and DC corona discharges using a carbon nanotube gas sensor[J]. Adv Mater Res 699:909–914

    CAS  Google Scholar 

  40. Han SW, Cha GB, Park Y, Hong SC (2017) Hydrogen physisorption based on the dissociative hydrogen chemisorption at the sulphur vacancy of MoS2 surface[J]. Sci Rep 7(1):7152

    Google Scholar 

  41. Mak T, Westerwaal RJ, Slaman M, Schreuders H, Van Vugt AW, Victoria M, Boelsma C, Dam B (2014) Optical fiber sensor for the continuous monitoring of hydrogen in oil[J]. Sens Actuators B Chem 190(190):982–989

    CAS  Google Scholar 

  42. Fan J, Wang F, Sun Q, Ye H, Jiang Q (2018) Application of polycrystalline SnO2 sensor chromatographic system to detect dissolved gases in transformer oil[J]. Sens Actuators B Chem 267:636–646

    CAS  Google Scholar 

  43. Yang AJ, Wang DW, Wang XH, Chu JF, Lv PL, Liu Y, Rong MZ (2017) Phosphorene: a promising candidate for highly sensitive and selective SF6 decomposition gas sensors[J]. IEEE Electron Device Lett 38(7):963–966

    CAS  Google Scholar 

  44. Cosoli P, Ferrone M, Pricl S, Fermeglia M (2008) Hydrogen sulphide removal from biogas by zeolite adsorption: part I. GCMC molecular simulations[J]. Chem Eng J 145(1):86–92

    CAS  Google Scholar 

  45. Zhang X, Dai Z, Chen Q, Tang J (2014) A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes[J]. Phys Scr 89(6):065803

    Google Scholar 

  46. Sun X, Yang Q, Meng R, Tan C, Liang Q, Jiang J, Ye H, Chen X (2017) Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study[J]. Appl Surf Sci 404:291–299

    CAS  Google Scholar 

  47. Cui H, Chen D, Zhang Y, Zhang X (2019) Dissolved gas analysis in transformer oil using Pd catalyst decorated MoSe2 monolayer: a first-principles theory[J]. Sustain Mater Technol 20:e00094

    CAS  Google Scholar 

  48. Cui H, Zhang G, Zhang X, Tang J (2019) Rh-doped MoSe2 as toxic gas scavenger: a first-principles study[J]. Nanoscale Adv 2019(1):772–780

    Google Scholar 

  49. Cui H, Zhang X, Chen D, Tang J (2018) Geometric structure and SOF2 adsorption behavior of Ptn (n = 1–4) clustered (8,0) single-walled CNT using density functional theory[J]. J Fluorine Chem 211:148–153

    CAS  Google Scholar 

  50. Cui H, Liu T, Zhang Y, Zhang X (2019) Ru-InN monolayer as a gas scavenger to guard the operation status of SF6 insulation devices: a first-principles theory[J]. IEEE Sens J 19(13):5249–5255

    CAS  Google Scholar 

  51. Patel K, Roondhe B, Dabhi SD, Jha PK (2018) A new flatland buddy as toxic gas scavenger: a first principles study[J]. J Hazard Mater 351:337–345

    CAS  Google Scholar 

  52. Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study[J]. Nanotechnology 20(18):185504

    Google Scholar 

  53. Peng S, Cho K, Qi P, Dai H (2004) Ab initio study of CNT NO2 gas sensor[J]. Chem Phys Lett 387(4):271–276

    CAS  Google Scholar 

  54. Cui H, Zhang X, Li Y, Chen D, Zhang Y (2019) First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger[J]. Appl Surf Sci 494:859–866

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxiao Ma.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Y., Wang, Z. et al. Small gas adsorption on Co–N4 porphyrin-like CNT for sensor exploitation: a first-principles study. Carbon Lett. 30, 177–187 (2020). https://doi.org/10.1007/s42823-019-00083-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00083-3

Keywords

Navigation