Skip to main content
Log in

Factorial design approach to assess the effect of fiber–matrix adhesion on the IFSS and work of adhesion of carbon fiber/polysulfone-modified epoxy composites

  • CARBON COMPOSITES - Mechanical properties
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

A two-level full factorial design 22 with three replications was employed to assess the effect of the incorporation of PSF into the epoxy matrix and the surface treatment of carbon fibers on the work of adhesion (WA) and the interfacial shear strength (IFSS) of carbon fiber–epoxy composites. The IFSS was determined using the microbond (or microdrop) micromechanical test, and the work of adhesion was estimated using two different procedures: (1) using the Owens and Wendt method, and (2) from the Dupre–Young expression using the contact angle θ of a cured epoxy resin on a single carbon fiber and the surface energy of the cured epoxy resin. It was found that the treatment of the carbon fiber with the silane-coupling agent appreciably increases its polar component because of the nitric acid oxidation and the chemisorption of the silane-coupling agent onto the carbon fiber surface. Also, the O=S=O group present in the polysulfone chain resin fairly increases the polar component of the epoxy–PSF blend. The results show that the wetting of the silane-treated carbon fiber by the thermoplastic-modified epoxy resin is better, thus increasing the fibermatrix adhesion. It was also found that there is a similarity between the trends of both, the IFSS and the WA results. Also, from the ANOVA results it was also seen that both the incorporation of the PSF to the epoxy matrix and the surface treatment of the carbon fibers and their interaction were statistically significant to the IFSS and the WA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kaynak C, Orgun O, Tincer T (2005) Matrix and interface modification of short carbon fiber-reinforced epoxy. Polym Test 24:455. https://doi.org/10.1016/j.polymertesting.2005.01.004

    Article  Google Scholar 

  2. Hou Y, Sun T (2012) An improved method to make the microdroplet single fiber composite specimen for determining the interfacial shear strength. J Mater Sci 47:4775–4778. https://doi.org/10.1007/s10853-012-6317-2

    Article  Google Scholar 

  3. Zu M, Li Q, Zhu Y, Dey M, Wang G, Lu W, Deitzel JM, Gillespie JW Jr, Byun J, Chou T (2012) The effective interfacial shear strength of carbon nanotubes fibers in an epoxy matrix characterized by a microdroplet test. Carbon 50:1271–1279. https://doi.org/10.1016/j.carbon.2011.10.047

    Article  Google Scholar 

  4. Pisanova E, Mader E (2000) Acid-base interactions and covalent bonding at a fibermatrix interface: contribution to the work of adhesion and measured adhesion strength. J Adhes Sci Technol 14:415. https://doi.org/10.1163/156856100742681

    Article  Google Scholar 

  5. da Silva LFM, Ochsner A, Adams RD (2011) Handbook of adhesion technology, vol 1. Springer, Berlin. https://doi.org/10.1007/978-3-642-01169-6 (Chapter 2)

    Book  Google Scholar 

  6. Owens DK (1970) Some thermodynamics aspects of polymer adhesion. J Appl Polym Sci 14:1725–1730. https://doi.org/10.1002/app.1970.070140706

    Article  Google Scholar 

  7. Pisanova E, Dutschk V, Lauke B (1998) Work of adhesion and local bond strength in glass fibre-thermoplastic polymer systems. J Adhes Sci Technol 12:3015–3322. https://doi.org/10.1163/156856198X00894

    Article  Google Scholar 

  8. Nardin M, Schultz J (1993) Relationship between fibre-matrix adhesion and the interfacial shear strength in polymer-based composites. Compos Interfaces 1:177–192

    Google Scholar 

  9. Palencia M (2017) Surface free energy of solids by contact angle measurements. J Sci Technol Appl 2:84–93

    Google Scholar 

  10. Van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4:884–891

    Article  Google Scholar 

  11. Kwok DY, Gietzelt T, Grundke K, Jacobasch HJ, Neumann AW (1979) Contact angle measurements and contact angle interpretation. 1. Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique. Langmuir 13:2880–2894. https://doi.org/10.1021/la9608021

    Article  Google Scholar 

  12. Kraus E, Orf L, Heilig M, Baudrit B, Starostina I, Stoyanov O (2017) Characterization of polymer surfaces by the use of different wetting theories regarding acid-base properties. Int J Polym Sci. https://doi.org/10.1155/2017/4350470 (ID 4350470)

    Google Scholar 

  13. Gulyás J, Rosenberger S, Foldes E, Pukanszky B (2000) Chemical modification and adhesion in carbon fiber/epoxy micro-composites; coupling and surface coverage. Polym Compos 21:387. https://doi.org/10.1002/pc.10197

    Article  Google Scholar 

  14. Guduri BR, Luyt AS (2006) Mechanical and morphological properties of carbon fiber reinforced-modified epoxy composites. J Appl Polym Sci 101:3529. https://doi.org/10.1002/app.24592

    Article  Google Scholar 

  15. Carrillo-Escalante HJ, Alvarez-Castillo A, Valadez-Gonzalez A, Herrera-Franco PJ (2016) Effect of fiber–matrix adhesion on the fracture behavior of a carbon fiber reinforced thermopalstic-modified epoxy matrix. Carbon Lett 19:47–56. https://doi.org/10.5714/cl.2016.19.047

    Article  Google Scholar 

  16. Lee SE, Jeong E, Lee MY, Lee M-K, Lee Y-S (2016) Improvement of the mechanical and thermal properties of polyethersulfone-modified epoxy composites. J Ind Eng Chem 33:73–79. https://doi.org/10.1016/j.jiec.2015.09.022

    Article  Google Scholar 

  17. Park J-M, Kim D-S, Kong J-W, Kim S-J, Jang J-H, Kim M, Kim W, De Vries KL (2007) Interfacial evaluation and self-sensing on residual stress and microfailure of toughened carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composites. Compos Part B 38:833–846. https://doi.org/10.1016/j.compositesb.2006.12.003

    Article  Google Scholar 

  18. Cano L, Builes DH, Tercjak A (2014) Morphological and mechanical study of nanostructured epoxy systems modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide)triblock copolymer. Polymer 55:738–745. https://doi.org/10.1016/j.polymer.2014.01.005

    Article  Google Scholar 

  19. Parker D, Bussink J, van de Grampel HT, Wheatley GW, Dorf EU, Ostlinning E, Reinking K, Schubert F, Jünger O, Wagener R (2012) Polymers high-temperature. In: Ullmann’s encyclopedia of industrial chemistry. Wiley

  20. Min BG, Hodgkin JH, Stachurski ZH (1993) Reaction mechanisms, microstructure, and fracture properties of thermoplastic polysulfone-modified epoxy resin. J Appl Polym Sci 50(6):1065–1073. https://doi.org/10.1002/app.1993.070500615

    Article  Google Scholar 

  21. Martinez I, Martin MD, Eceiza A, Oyanguren P, Mondragon I (2000) Phase separation in polysulfone-modified epoxy mixtures. Relationships between curing conditions, morphology and ultimate behavior. Polymer 41:1027–1035. https://doi.org/10.1016/S0032-3861(99)00238-4

    Article  Google Scholar 

  22. Xie X-M, Yang H (2001) phase structure control of epoxy-polysulfone blends effects of molecular weight of epoxy resins. Mater Des 22:7–9. https://doi.org/10.1016/S0261-3069(00)00027-3

    Article  Google Scholar 

  23. Yun NG, Won YG, Kim SC (2004) Toughening of epoxy composite by dispersing polysulfone particle to form morphology spectrum. Polym Bull 52:365–372. https://doi.org/10.1007/s00289-004-0293-x

    Article  Google Scholar 

  24. Montgomery DC (2012) Design and analysis of experiments, 8th edn. Wiley, New York

    Google Scholar 

  25. Kinloch AJ (1987) Adhesion and adhesives, science and technology. Chapman and Hall, London

    Book  Google Scholar 

  26. Lipatov YS, Myshko VI (1974) Relation between adhesion and thermodynamic parameters of polymers. Polym Sci USSR 16:1328. https://doi.org/10.1016/0032-3950(74)90358-X

    Article  Google Scholar 

  27. Mader E, Jacobasch H-J, Grundke K, Gietzelt T (1996) Influence of an optimized interphase on the properties of polypropylene–glass fibre composites. Compos Part A 27A:907–912. https://doi.org/10.1016/1359-835X(96)00044-9

    Article  Google Scholar 

  28. Zaborskaya LV, Dovgualo VA, Yurkevich OR (1995) On the interaction of molten thermoplastics and fibre surfaces. J Adhes Sci Technol 9:61–71. https://doi.org/10.1163/156856195X00293

    Article  Google Scholar 

  29. Fowkes FM (1983) Acid-base interactions in polymer adhesion. In: Mittal KL (ed) Physicochemical aspects of polymer surfaces, vol 2. Plenum Press, New York, pp 583–603

    Google Scholar 

  30. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747. https://doi.org/10.1002/app.1969.070130815

    Article  Google Scholar 

  31. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  32. Bayramli E, Toppare L, Kutay N (2001) Investigations on the electrochemical surface treatment of carbon fibers. Turk J Chem 25:251–258

    Google Scholar 

  33. Bismarck A, Richter D, Wuertz C, Springer J (1999) Basic and acidic surfaces oxides on carbon fiber and their influence on the expected adhesion to polyamide. Colloid Surf A Physicochem Eng Asp 159:341–350. https://doi.org/10.1016/S0927-7757(99)00262-9

    Article  Google Scholar 

  34. Ramanathan T, Bismarck A, Schulz E, Subramanian K (2001) Investigation of the influence of acidic and basic surface groups on carbon fibres on the interfacial shear strength in an epoxy matrix by means of single fibre pull out test. Compos Sci Technol 61:599–605. https://doi.org/10.1016/S0266-3538(00)00239-6

    Article  Google Scholar 

  35. Dilsiz N, Wightman JP (2000) Effect of acid-base properties of unsized and sized carbon fibers on fiber/epoxy matrix adhesion. Colloid Surf A Physicochem Eng Asp 164:325–336. https://doi.org/10.1016/S0927-7757(99)00400-8

    Article  Google Scholar 

  36. Ramanathan T, Bismarck A, Schulz E, Subramanian K (2001) The use of a single-fibre pull out test to investigate the influence of acidic and basic surface groups on carbon fibres on the adhesion to poly(phenylene sulfide) and matrix-morphology-dependent fracture behavior. Compos Sci Technol 61:1703–1710. https://doi.org/10.1016/S0266-3538(01)00069-0

    Article  Google Scholar 

  37. Das KR, Rahmatullah AHM (2016) A brief review of tests for normality. Am J Theor Appl Stat 5(1):5–12. https://doi.org/10.11648/j.ajtas.20160501.12

    Article  Google Scholar 

  38. Ortiz-Fernández A, Carrillo-Sánchez FA, May-Hernández LH, Estrada-León RJ, Carrillo-Escalante HJ, Hernández-Sánchez F, Valadez-Gonzalez A (2017) Design of experiments for optimization of a biodegradable adhesive based on ramon starch (Brosimum alicastrum Sw.). Int J Adhes Adhes 73:28–37. https://doi.org/10.1016/j.ijadhadh.2016.11.004

    Article  Google Scholar 

  39. Law M, Jackson D (2017) Residual plots for linear regression models with censored outcome data: a refined method for visualizing residual uncertainty. Commun Stat Simul Comput 46:3159–3171. https://doi.org/10.1080/03610918.2015.1076470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Valadez-González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cauich-Cupul, J.I., Herrera-Franco, P.J., García-Hernández, E. et al. Factorial design approach to assess the effect of fiber–matrix adhesion on the IFSS and work of adhesion of carbon fiber/polysulfone-modified epoxy composites. Carbon Lett. 29, 345–358 (2019). https://doi.org/10.1007/s42823-019-00039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00039-7

Keywords

Navigation