Skip to main content

Advertisement

Log in

Regulation of DNA damage-induced ATM activation by histone modifications

  • Review Article
  • Published:
Genome Instability & Disease Aims and scope Submit manuscript

Abstract

Ataxia-telangiectasia mutated (ATM) is an apical kinase involved in the cellular response to DNA damage in eukaryotes, especially DNA double-strand breaks (DSBs). Upon DSB, ATM is activated through a hierarchy of well-organized cellular processes and machineries, including post-translational modifications (PTMs), the MRE11-RAD50-NBS1 (MRN) complex and chromatin perturbations. ATM activation initiates a cascade of chromatin modifications and nucleosome remodeling that permits the assembly of repair factors that ensure a highly orchestrated response to repair damaged DNA. Numerous studies have tried to elucidate the mechanisms of ATM activation, but how it is activated by DNA damage signals is still unclear. Histone modifications are considered essential for regulating ATM activation: a histone octamer constitutes the nucleosome core and histone tails protrude into the DNA strands to alter the chromatin landscape and DNA accessibility. Here, we summarize how histone modifications regulate ATM activation, with an emphasis on the functional relevance in DNA damage response and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamowicz, M., Vermezovic, J., & Fagagna, F. (2016). NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex. Cell Reports,16, 2068–2076.

    CAS  PubMed  Google Scholar 

  • Ahmad, F., Patrick, S., Sheikh, T., et al. (2017). Telomerase reverse transcriptase (TERT)—enhancer of zeste homolog 2 (EZH2) network regulates lipid metabolism and DNA damage responses in glioblastoma. Journal of Neurochemistry,143, 671–683.

    CAS  PubMed  Google Scholar 

  • Ali, A., Zhang, J., Bao, S., et al. (2004). Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes and Development,18, 249–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews, F. H., Shinsky, S. A., Shanle, E. K., et al. (2016). The Taf14 YEATS domain is a reader of histone crotonylation. Nature Chemical Biology,12, 396–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyama, K., Fukumoto, Y., Ishibashi, K., et al. (2011). Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation. Experimental Cell Research,317, 2874–2903.

    CAS  PubMed  Google Scholar 

  • Ayrapetov, M. K., Gursoy-Yuzugullu, O., Xu, C., Xu, Y., & Price, B. D. (2014). DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proceedings of the National Academy of Sciences of the United States of America,111, 9169–9174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakkenist, C. J., & Kastan, M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature,421, 499–506.

    CAS  PubMed  Google Scholar 

  • Banin, S., Moyal, L., Shieh, S., et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science,281, 1674–1677.

    CAS  PubMed  Google Scholar 

  • Bannister, A. J., Zegerman, P., Partridge, J. F., et al. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature,410, 120–124.

    CAS  PubMed  Google Scholar 

  • Baretic, D., Pollard, H. K., Fisher, D. I., et al. (2017). Structures of closed and open conformations of dimeric human ATM. Science Advances,3, e1700933.

    PubMed  PubMed Central  Google Scholar 

  • Barlow, C., Hirotsune, S., Paylor, R., et al. (1996). Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell,86, 159–171.

    CAS  PubMed  Google Scholar 

  • Boulikas, T. (1989). DNA strand breaks alter histone ADP-ribosylation. Proceedings of the National Academy of Sciences of the United States of America,86, 3499–3503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant, H. E., Schultz, N., Thomas, H. D., et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature,434, 913–917.

    CAS  PubMed  Google Scholar 

  • Burma, S., Chen, B. P., Murphy, M., Kurimasa, A., & Chen, D. J. (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. Journal of Biological Chemistry,276, 42462–42467.

    CAS  PubMed  Google Scholar 

  • Canman, C. E., Lim, D. S., Cimprich, K. A., et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science,281, 1677–1679.

    CAS  PubMed  Google Scholar 

  • Cao, L. L., Shen, C., & Zhu, W. G. (2016a). Histone modifications in DNA damage response. Science China Life Sciences,59, 257–270.

    CAS  PubMed  Google Scholar 

  • Cao, L. L., Wei, F., Du, Y., et al. (2016b). ATM-mediated KDM2A phosphorylation is required for the DNA damage repair. Oncogene,35, 301–313.

    CAS  PubMed  Google Scholar 

  • Carney, J. P., Maser, R. S., Olivares, H., et al. (1998). The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell,93, 477–486.

    CAS  PubMed  Google Scholar 

  • Carson, C. T., Schwartz, R. A., Stracker, T. H., Lilley, C. E., Lee, D. V., & Weitzman, M. D. (2003). The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO Journal,22, 6610–6620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho, S., Vitor, A. C., Sridhara, S. C., et al. (2014). SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. Elife,3, e02482.

    PubMed  PubMed Central  Google Scholar 

  • Celeste, A., Difilippantonio, S., Difilippantonio, M. J., et al. (2003a). H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell,114, 371–383.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celeste, A., Fernandez-Capetillo, O., Kruhlak, M. J., et al. (2003b). Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biology,5, 675–679.

    CAS  PubMed  Google Scholar 

  • Celeste, A., Petersen, S., Romanienko, P. J., et al. (2002). Genomic instability in mice lacking histone H2AX. Science,296, 922–927.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman, J. R., & Jackson, S. P. (2008). Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Reports,9, 795–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., & Zhu, W. G. (2016). Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochimica et Biophysica Sinica (Shanghai),48, 603–616.

    CAS  Google Scholar 

  • Chou, D. M., Adamson, B., Dephoure, N. E., et al. (2010). A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proceedings of the National Academy of Sciences of the United States of America,107, 18475–18480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook, P. J., Ju, B. G., Telese, F., Wang, X., Glass, C. K., & Rosenfeld, M. G. (2009). Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature,458, 591–596.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel, J. A., Pellegrini, M., Lee, J. H., Paull, T. T., Feigenbaum, L., & Nussenzweig, A. (2008). Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo. Journal of Cell Biology,183, 777–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das, C., Lucia, M. S., Hansen, K. C., & Tyler, J. K. (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature,459, 113–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Murcia, J. M., Niedergang, C., Trucco, C., et al. (1997). Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proceedings of the National Academy of Sciences of the United States of America,94, 7303–7307.

    PubMed  PubMed Central  Google Scholar 

  • Di Micco, R., Sulli, G., Dobreva, M., et al. (2011). Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nature Cell Biology,13, 292–302.

    PubMed  PubMed Central  Google Scholar 

  • Difilippantonio, S., Celeste, A., Fernandez-Capetillo, O., et al. (2005). Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nature Cell Biology,7, 675–685.

    CAS  PubMed  Google Scholar 

  • Dupre, A., Boyer-Chatenet, L., & Gautier, J. (2006). Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nature Structural and Molecular Biology,13, 451–457.

    CAS  PubMed  Google Scholar 

  • Dupre, A., Boyer-Chatenet, L., Sattler, R. M., et al. (2008). A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nature Chemical Biology,4, 119–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elson, A., Wang, Y., Daugherty, C. J., et al. (1996). Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proceedings of the National Academy of Sciences of the United States of America,93, 13084–13089.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falck, J., Coates, J., & Jackson, S. P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature,434, 605–611.

    CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo, O., Lee, A., Nussenzweig, M., & Nussenzweig, A. (2004). H2AX: the histone guardian of the genome. DNA Repair (Amst),3, 959–967.

    CAS  Google Scholar 

  • Fnu, S., Williamson, E. A., De Haro, L. P., et al. (2011). Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining. Proceedings of the National Academy of Sciences of the United States of America,108, 540–545.

    CAS  PubMed  Google Scholar 

  • Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I. Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife 2017; 6.

  • Fukuto, A., Ikura, M., Ikura, T., et al. (2018). SUMO modification system facilitates the exchange of histone variant H2A.Z-2 at DNA damage sites. Nucleus-Phila,9, 87–94.

    CAS  Google Scholar 

  • Ge, Z., Nair, D., Guan, X., Rastogi, N., Freitas, M. A., & Parthun, M. R. (2013). Sites of acetylation on newly synthesized histone H4 are required for chromatin assembly and DNA damage response signaling. Molecular and Cellular Biology,33, 3286–3298.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giannattasio, M., Lazzaro, F., Plevani, P., & Muzi-Falconi, M. (2005). The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. Journal of Biological Chemistry,280, 9879–9886.

    CAS  PubMed  Google Scholar 

  • Gibson, S. L., Bindra, R. S., & Glazer, P. M. (2005). Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner. Cancer Research,65, 10734–10741.

    CAS  PubMed  Google Scholar 

  • Goodarzi, A. A., Jonnalagadda, J. C., Douglas, P., et al. (2004). Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO Journal,23, 4451–4461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gravells, P., Grant, E., Smith, K. M., James, D. I., & Bryant, H. E. (2017). Specific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase. DNA Repair (Amst),52, 81–91.

    CAS  Google Scholar 

  • Gravells, P., Neale, J., Grant, E., et al. (2018). Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib. DNA Repair (Amst),61, 25–36.

    CAS  Google Scholar 

  • Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D., & Paull, T. T. (2010). ATM activation by oxidative stress. Science,330, 517–521.

    CAS  PubMed  Google Scholar 

  • Guo, C. Y., Mizzen, C., Wang, Y., & Larner, J. M. (2000). Histone H1 and H3 dephosphorylation are differentially regulated by radiation-induced signal transduction pathways. Cancer Research,60, 5667–5672.

    CAS  PubMed  Google Scholar 

  • Guo, C. Y., Wang, Y., Brautigan, D. L., & Larner, J. M. (1999). Histone H1 dephosphorylation is mediated through a radiation-induced signal transduction pathway dependent on ATM. Journal of Biological Chemistry,274, 18715–18720.

    CAS  PubMed  Google Scholar 

  • Gupta, A., Sharma, G. G., Young, C. S., et al. (2005). Involvement of human MOF in ATM function. Molecular and Cellular Biology,25, 5292–5305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haince, J. F., Kozlov, S., Dawson, V. L., et al. (2007). Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. Journal of Biological Chemistry,282, 16441–16453.

    CAS  PubMed  Google Scholar 

  • Hayakawa, K., Hirosawa, M., Tani, R., Yoneda, C., Tanaka, S., & Shiota, K. (2017). H2A O-GlcNAcylation at serine 40 functions genomic protection in association with acetylated H2AZ or gammaH2AX. Epigenetics Chromatin,10, 51.

    PubMed  PubMed Central  Google Scholar 

  • Hendriks, I. A., Treffers, L. W., Verlaan-de Vries, M., Olsen, J. V., & Vertegaal, A. C. (2015). SUMO-2 orchestrates chromatin modifiers in response to DNA damage. Cell Reports,10, 1778–1791.

    CAS  PubMed  Google Scholar 

  • Holt, M., & Muir, T. (2015). Application of the protein semisynthesis strategy to the generation of modified chromatin. Annual Review of Biochemistry,84, 265–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, Z., Jiang, J., Lan, L., et al. (2008). A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Research,36, 2939–2947.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hottiger, M. O. (2015). Nuclear ADP-Ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annual Review of Biochemistry,84, 227–263.

    CAS  PubMed  Google Scholar 

  • Huang, C., Cheng, J., Bawa-Khalfe, T., Yao, X., Chin, Y. E., & Yeh, E. T. H. (2016). SUMOylated ORC2 recruits a histone demethylase to regulate centromeric histone modification and genomic stability. Cell Reports,15, 147–157.

    CAS  PubMed  Google Scholar 

  • Huen, M. S., Grant, R., Manke, I., et al. (2007). RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell,131, 901–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huyen, Y., Zgheib, O., Ditullio, R. A., Jr., et al. (2004). Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature,432, 406–411.

    CAS  PubMed  Google Scholar 

  • Ikura, M., Furuya, K., Matsuda, S., et al. (2015). Acetylation of histone H2AX at Lys 5 by the TIP60 histone acetyltransferase complex is essential for the dynamic Binding of NBS1 to damaged chromatin. Molecular and Cellular Biology,35, 4147–4157.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikura, T., Tashiro, S., Kakino, A., et al. (2007). DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Molecular and Cellular Biology,27, 7028–7040.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature,461, 1071–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs, S. A., & Khorasanizadeh, S. (2002). Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science,295, 2080–2083.

    CAS  PubMed  Google Scholar 

  • Jazayeri, A., Balestrini, A., Garner, E., Haber, J. E., & Costanzo, V. (2008). Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO Journal,27, 1953–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha, D. K., & Strahl, B. D. (2014). An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun,5, 3965.

    CAS  PubMed  Google Scholar 

  • Jing, Y., Liu, Z., Tian, G., Bao, X., Ishibashi, T., & Li, X. D. (2018). Site-specific installation of succinyl lysine analog into histones reveals the effect of H2BK34 succinylation on nucleosome dynamics. Cell Chem Biol,25(166–174), e167.

    Google Scholar 

  • Johansen, K. M., & Johansen, J. (2006). Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Research,14, 393–404.

    CAS  PubMed  Google Scholar 

  • Jungmichel, S., Rosenthal, F., Altmeyer, M., Lukas, J., Hottiger, M. O., & Nielsen, M. L. (2013). Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. Molecular Cell,52, 272–285.

    CAS  PubMed  Google Scholar 

  • Kaidi, A., & Jackson, S. P. (2013). KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature,498, 70–74.

    CAS  PubMed  Google Scholar 

  • Kanu, N., & Behrens, A. (2007). ATMIN defines an NBS1-independent pathway of ATM signalling. EMBO Journal,26, 2933–2941.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khoury-Haddad, H., Guttmann-Raviv, N., Ipenberg, I., Huggins, D., Jeyasekharan, A. D., & Ayoub, N. (2014). PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites promotes double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America,111, E728–E737.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y. C., Gerlitz, G., Furusawa, T., et al. (2009). Activation of ATM depends on chromatin interactions occurring before induction of DNA damage. Nature Cell Biology,11, 92–96.

    CAS  PubMed  Google Scholar 

  • Koch-Nolte, F., Kernstock, S., Mueller-Dieckmann, C., Weiss, M. S., & Haag, F. (2008). Mammalian ADP-ribosyltransferases and ADP-ribosylhydrolases. Frontiers in Bioscience,13, 6716–6729.

    CAS  PubMed  Google Scholar 

  • Kolas, N. K., Chapman, J. R., Nakada, S., et al. (2007). Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science,318, 1637–1640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlov, S. V., Graham, M. E., Jakob, B., et al. (2011). Autophosphorylation and ATM activation: additional sites add to the complexity. Journal of Biological Chemistry,286, 9107–9119.

    CAS  PubMed  Google Scholar 

  • Kozlov, S. V., Graham, M. E., Peng, C., Chen, P., Robinson, P. J., & Lavin, M. F. (2006). Involvement of novel autophosphorylation sites in ATM activation. EMBO Journal,25, 3504–3514.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan, V., Chow, M. Z., Wang, Z., et al. (2011). Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proceedings of the National Academy of Sciences of the United States of America,108, 12325–12330.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan, N., Jeong, D. G., Jung, S. K., et al. (2009). Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. Journal of Biological Chemistry,284, 16066–16070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, R., Hunt, C. R., Gupta, A., et al. (2011). Purkinje cell-specific males absent on the first (mMof) gene deletion results in an ataxia-telangiectasia-like neurological phenotype and backward walking in mice. Proceedings of the National Academy of Sciences of the United States of America,108, 3636–3641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., & Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature,410, 116–120.

    CAS  PubMed  Google Scholar 

  • Lau, W. C., Li, Y., Liu, Z., Gao, Y., Zhang, Q., & Huen, M. S. (2016). Structure of the human dimeric ATM kinase. Cell Cycle,15, 1117–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. H., Choy, M. L., Ngo, L., Foster, S. S., & Marks, P. A. (2010a). Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proceedings of the National Academy of Sciences of the United States of America,107, 14639–14644.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. H., Goodarzi, A. A., Jeggo, P. A., & Paull, T. T. (2010b). 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO Journal,29, 574–585.

    CAS  PubMed  Google Scholar 

  • Lee, C. S., Lee, K., Legube, G., & Haber, J. E. (2014). Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nature Structural and Molecular Biology,21, 103–109.

    CAS  PubMed  Google Scholar 

  • Lee, J. H., & Paull, T. T. (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science,304, 93–96.

    CAS  PubMed  Google Scholar 

  • Lee, J. H., & Paull, T. T. (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science,308, 551–554.

    CAS  PubMed  Google Scholar 

  • Leidecker, O., Bonfiglio, J. J., Colby, T., et al. (2016). Serine is a new target residue for endogenous ADP-ribosylation on histones. Nature Chemical Biology,12, 998–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T. T., Guan, J. H., Huang, Z. J., Hu, X., & Zheng, X. F. (2014). RNF168-mediated H2A neddylation antagonizes ubiquitylation of H2A and regulates DNA damage repair. Journal of Cell Science,127, 2238–2248.

    CAS  PubMed  Google Scholar 

  • Li, J., Hart, R. P., Mallimo, E. M., Swerdel, M. R., Kusnecov, A. W., & Herrup, K. (2013). EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nature Neuroscience,16, 1745–1753.

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Li Z, Dong L et al. (2018) Histone H1 acetylation at lysine 85 regulates chromatin condensation and genome stability upon DNA damage. Nucleic Acids Res

  • Li, Z., Li, Y., Tang, M., et al. (2018b). Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair. Cell Research ,28, 756–770.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Sabari, B. R., Panchenko, T., et al. (2016a). Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain. Molecular Cell,62, 181–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Shi, L., Yang, S., et al. (2016b). SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nature Communications,7, 12235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., & Wang, Y. (2017). Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair. Journal of Biological Chemistry,292, 11951–11959.

    PubMed  PubMed Central  Google Scholar 

  • Li, Z., & Zhu, W. G. (2014). Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications. International Journal of Biological Sciences,10, 757–770.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liokatis, S., Stutzer, A., Elsasser, S. J., et al. (2012). Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nature Structural and Molecular Biology,19, 819–823.

    CAS  PubMed  Google Scholar 

  • Lorkovic, Z. J., Park, C., Goiser, M., et al. (2017). Compartmentalization of DNA damage response between heterochromatin and euchromatin is mediated by distinct H2A histone variants. Current Biology,27, 1192–1199.

    CAS  PubMed  Google Scholar 

  • Lou, Z., Minter-Dykhouse, K., Franco, S., et al. (2006). MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Molecular Cell,21, 187–200.

    CAS  PubMed  Google Scholar 

  • Ma, T., Chen, Y. B., Zhang, F., Yang, C. Y., Wang, S. M., & Yu, X. C. (2013). RNF111-Dependent neddylation activates DNA damage-induced ubiquitination. Molecular Cell,49, 897–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mailand, N., Bekker-Jensen, S., Faustrup, H., et al. (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell,131, 887–900.

    CAS  PubMed  Google Scholar 

  • Matsuoka, S., Huang, M., & Elledge, S. J. (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science,282, 1893–1897.

    CAS  PubMed  Google Scholar 

  • Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., & Elledge, S. J. (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America,97, 10389–10394.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiroli, F., Vissers, J. H., van Dijk, W. J., et al. (2012). RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell,150, 1182–1195.

    CAS  PubMed  Google Scholar 

  • Melander, F., Bekker-Jensen, S., Falck, J., Bartek, J., Mailand, N., & Lukas, J. (2008). Phosphorylation of SDT repeats in the MDC1N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. Journal of Cell Biology,181, 213–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messner, S., & Hottiger, M. O. (2011). Histone ADP-ribosylation in DNA repair, replication and transcription. Trends in Cell Biology,21, 534–542.

    CAS  PubMed  Google Scholar 

  • Meyer, B., Fabbrizi, M. R., Raj, S., Zobel, C. L., Hallahan, D. E., & Sharma, G. G. (2016). Histone H3 Lysine 9 Acetylation Obstructs ATM Activation and Promotes Ionizing Radiation Sensitivity in Normal Stem Cells. Stem Cell Reports,7, 1013–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, K. M., Tjeertes, J. V., Coates, J., et al. (2010). Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Structural and Molecular Biology,17, 1144–1151.

    CAS  PubMed  Google Scholar 

  • Mortusewicz, O., Fouquerel, E., Ame, J. C., Leonhardt, H., & Schreiber, V. (2011). PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Research,39, 5045–5056.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyal, L., Lerenthal, Y., Gana-Weisz, M., et al. (2011). Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Molecular Cell,41, 529–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murga, M., Jaco, I., Fan, Y., et al. (2007). Global chromatin compaction limits the strength of the DNA damage response. Journal of Cell Biology,178, 1101–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Musselman, C. A., Avvakumov, N., Watanabe, R., et al. (2012). Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nature Structural and Molecular Biology,19, 1266–1272.

    CAS  PubMed  Google Scholar 

  • Musselman, C. A., Gibson, M. D., Hartwick, E. W., et al. (2013). Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nat Commun,4, 2969.

    PubMed  Google Scholar 

  • Namdar, M., Perez, G., Ngo, L., & Marks, P. A. (2010). Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proceedings of the National Academy of Sciences of the United States of America,107, 20003–20008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, P. R., Nietlispach, D., Mott, H. R., et al. (2002). Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature,416, 103–107.

    CAS  PubMed  Google Scholar 

  • Nielsen, S. J., Schneider, R., Bauer, U. M., et al. (2001). Rb targets histone H3 methylation and HP1 to promoters. Nature,412, 561–565.

    CAS  PubMed  Google Scholar 

  • Nowsheen, S., Aziz, K., Aziz, A., et al. (2018). L3MBTL2 orchestrates ubiquitin signalling by dictating the sequential recruitment of RNF8 and RNF168 after DNA damage. Nature Cell Biology,20, 455–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzo L, Leidecker O, Prokhorova E, Dauben H, Matic I, Ahel I. Serine is the major residue for ADP-ribosylation upon DNA damage. Elife 2018; 7.

  • Pei, H., Zhang, L., Luo, K., et al. (2011). MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature,470, 124–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrini, M., Celeste, A., Difilippantonio, S., et al. (2006). Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature,443, 222–225.

    CAS  PubMed  Google Scholar 

  • Peng, J. C., & Karpen, G. H. (2009). Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genetics,5, e1000435.

    PubMed  PubMed Central  Google Scholar 

  • Penicud, K., & Behrens, A. (2014). DMAP1 is an essential regulator of ATM activity and function. Oncogene,33, 525–531.

    CAS  PubMed  Google Scholar 

  • Pfister, S. X., Ahrabi, S., Zalmas, L. P., et al. (2014). SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Reports,7, 2006–2018.

    CAS  PubMed  Google Scholar 

  • Polo, S. E., & Jackson, S. P. (2011). Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes and Development,25, 409–433.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandran, S., Haddad, D., Li, C., et al. (2016). The SAGA deubiquitination module promotes DNA repair and class switch recombination through ATM and DNAPK-mediated gammaH2AX formation. Cell Reports,15, 1554–1565.

    CAS  PubMed  Google Scholar 

  • Robert, T., Vanoli, F., Chiolo, I., et al. (2011). HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature,471, 74–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S., & Bonner, W. M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry,273, 5858–5868.

    CAS  PubMed  Google Scholar 

  • Rosenthal, F., & Hottiger, M. O. (2014). Identification of ADP-ribosylated peptides and ADP-ribose acceptor sites. Frontiers in Bioscience (Landmark Ed),19, 1041–1056.

    CAS  Google Scholar 

  • Sabari, B. R., Tang, Z., Huang, H., et al. (2015). Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Molecular Cell,58, 203–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabari, B. R., Zhang, D., Allis, C. D., & Zhao, Y. (2017). Metabolic regulation of gene expression through histone acylations. Nature Reviews Molecular Cell Biology,18, 90–101.

    CAS  PubMed  Google Scholar 

  • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry,73, 39–85.

    CAS  PubMed  Google Scholar 

  • Savitsky, K., Bar-Shira, A., Gilad, S., et al. (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science,268, 1749–1753.

    CAS  PubMed  Google Scholar 

  • Sha, M. Q., Zhao, X. L., Li, L., et al. (2016). EZH2 mediates lidamycin-induced cellular senescence through regulating p21 expression in human colon cancer cells. Cell Death Dis,7, e2486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, A. K., Bhattacharya, S., Khan, S. A., Khade, B., & Gupta, S. (2015a). Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells. Mutation Research,773, 83–91.

    CAS  PubMed  Google Scholar 

  • Sharma, A. K., Khan, S. A., Sharda, A., Reddy, D. V., & Gupta, S. (2015b). MKP1 phosphatase mediates G1-specific dephosphorylation of H3Serine10P in response to DNA damage. Mutation Research,778, 71–79.

    CAS  PubMed  Google Scholar 

  • Sharma, G. G., So, S., Gupta, A., et al. (2010). MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Molecular and Cellular Biology,30, 3582–3595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiloh, Y., & Ziv, Y. (2013). The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology,14, 197–210.

    CAS  PubMed  Google Scholar 

  • Shimada, M., Haruta, M., Niida, H., Sawamoto, K., & Nakanishi, M. (2010). Protein phosphatase 1gamma is responsible for dephosphorylation of histone H3 at Thr 11 after DNA damage. EMBO Reports,11, 883–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada, M., Niida, H., Zineldeen, D. H., et al. (2008). Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell,132, 221–232.

    CAS  PubMed  Google Scholar 

  • Shirai, H., Poetsch, A. R., Gunji, A., et al. (2013). PARG dysfunction enhances DNA double strand break formation in S-phase after alkylation DNA damage and augments different cell death pathways. Cell Death Dis,4, e656.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R., & Peterson, C. L. (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science,311, 844–847.

    CAS  PubMed  Google Scholar 

  • Shreeram, S., Demidov, O. N., Hee, W. K., et al. (2006). Wip1 phosphatase modulates ATM-dependent signaling pathways. Molecular Cell,23, 757–764.

    CAS  PubMed  Google Scholar 

  • Singh, N., Basnet, H., Wiltshire, T. D., et al. (2012). Dual recognition of phosphoserine and phosphotyrosine in histone variant H2A.X by DNA damage response protein MCPH1. Proceedings of the National Academy of Sciences of the United States of America,109, 14381–14386.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirbu, B. M., & Cortez, D. (2013). DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol,5, a012724.

    PubMed  PubMed Central  Google Scholar 

  • Spycher, C., Miller, E. S., Townsend, K., et al. (2008). Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. Journal of Cell Biology,181, 227–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, G. S., Maser, R. S., Stankovic, T., et al. (1999). The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell,99, 577–587.

    CAS  PubMed  Google Scholar 

  • Stucki, M., Clapperton, J. A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., & Jackson, S. P. (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell,123, 1213–1226.

    CAS  PubMed  Google Scholar 

  • Stucki, M., & Jackson, S. P. (2006). gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst),5, 534–543.

    CAS  Google Scholar 

  • Sun, Y., Jiang, X., Chen, S., Fernandes, N., & Price, B. D. (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proceedings of the National Academy of Sciences of the United States of America,102, 13182–13187.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Jiang, X., Xu, Y., et al. (2009). Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nature Cell Biology,11, 1376–1382.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, M., Luo, H., Lee, S., et al. (2011). Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell,146, 1016–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, M., Li, Z., Zhang, C., et al. (2019). SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair. Science Advances. https://doi.org/10.1126/sciadv.aav1118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorslund, T., Ripplinger, A., Hoffmann, S., et al. (2015). Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature,527, 389–393.

    CAS  PubMed  Google Scholar 

  • Tian, B., Yang, Q., & Mao, Z. (2009). Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nature Cell Biology,11, 211–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tjeertes, J. V., Miller, K. M., & Jackson, S. P. (2009). Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO Journal,28, 1878–1889.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toiber, D., Erdel, F., Bouazoune, K., et al. (2013). SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Molecular Cell,51, 454–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi, D. N., Chowdhury, R., Trudel, L. J., et al. (2013). Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proceedings of the National Academy of Sciences of the United States of America,110, E2950–E2957.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, W. B., Chung, Y. M., Takahashi, Y., Xu, Z., & Hu, M. C. (2008). Functional interaction between FOXO3a and ATM regulates DNA damage response. Nature Cell Biology,10, 460–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tutton, S., Azzam, G. A., Stong, N., et al. (2016). Subtelomeric p53 binding prevents accumulation of DNA damage at human telomeres. EMBO Journal,35, 193–207.

    CAS  PubMed  Google Scholar 

  • Uckelmann, M., & Sixma, T. K. (2017). Histone ubiquitination in the DNA damage response. DNA Repair (Amst),56, 92–101.

    CAS  Google Scholar 

  • Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., & Shiloh, Y. (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO Journal,22, 5612–5621.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varon, R., Vissinga, C., Platzer, M., et al. (1998). Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell,93, 467–476.

    CAS  PubMed  Google Scholar 

  • Vempati, R. K., Jayani, R. S., Notani, D., Sengupta, A., Galande, S., & Haldar, D. (2010). p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. Journal of Biological Chemistry,285, 28553–28564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, C., Herranz-Martin, S., Karyka, E., et al. (2017). C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nature Neuroscience,20, 1225–1235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Chu, H., Lv, M., et al. (2016a). Structure of the intact ATM/Tel1 kinase. Nature Communications,7, 11655.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., & Goldstein, M. (2016). Small RNAs recruit chromatin-modifying enzymes MMSET and Tip60 to reconfigure damaged DNA upon double-strand break and facilitate repair. Cancer Research,76, 1904–1915.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Zhang, N., Zhang, L., et al. (2016b). Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Molecular Cell,63, 34–48.

    CAS  PubMed  Google Scholar 

  • Wang, D., Zhou, J., Liu, X., et al. (2013). Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability. Proceedings of the National Academy of Sciences of the United States of America,110, 5516–5521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Zhou, W., Zheng, Z., et al. (2012). The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair (Amst),11, 146–156.

    CAS  Google Scholar 

  • Wang, Z., Zhu, W. G., & Xu, X. (2017). Ubiquitin-like modifications in the DNA damage response. Mutation Research,803–805, 56–75.

    PubMed  Google Scholar 

  • Wilson, M. D., Benlekbir, S., Fradet-Turcotte, A., et al. (2016). The structural basis of modified nucleosome recognition by 53BP1. Nature,536, 100–103.

    CAS  PubMed  Google Scholar 

  • Wu, J., Chen, Y., Lu, L. Y., et al. (2011a). Chfr and RNF8 synergistically regulate ATM activation. Nature Structural and Molecular Biology,18, 761–768.

    CAS  PubMed  Google Scholar 

  • Wu, Z., Lee, S. T., Qiao, Y., et al. (2011b). Polycomb protein EZH2 regulates cancer cell fate decision in response to DNA damage. Cell Death and Differentiation,18, 1771–1779.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L., Luo, K., Lou, Z., & Chen, J. (2008). MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America,105, 11200–11205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wysocki, R., Javaheri, A., Allard, S., Sha, F., Cote, J., & Kron, S. J. (2005). Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Molecular and Cellular Biology,25, 8430–8443.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, A., Li, H., Shechter, D., et al. (2009). WSTF regulates the H2AX DNA damage response via a novel tyrosine kinase activity. Nature,457, 57–62.

    CAS  PubMed  Google Scholar 

  • Xiong, X., Panchenko, T., Yang, S., et al. (2016). Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nature Chemical Biology,12, 1111–1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Ashley, T., Brainerd, E. E., Bronson, R. T., Meyn, M. S., & Baltimore, D. (1996). Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes and Development,10, 2411–2422.

    CAS  PubMed  Google Scholar 

  • Yang, D. Q., & Kastan, M. B. (2000). Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nature Cell Biology,2, 893–898.

    CAS  PubMed  Google Scholar 

  • Young, L. C., McDonald, D. W., & Hendzel, M. J. (2013). Kdm4b histone demethylase is a DNA damage response protein and confers a survival advantage following gamma-irradiation. Journal of Biological Chemistry,288, 21376–21388.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, D., Guan, H., Zhao, S., et al. (2016). YEATS2 is a selective histone crotonylation reader. Cell Research,26, 629–632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, N., & Shabek, N. (2017). Ubiquitin ligases: structure, function, and regulation. Annual Review of Biochemistry,86, 129–157.

    CAS  PubMed  Google Scholar 

  • Zhou, Y., Lee, J. H., Jiang, W., Crowe, J. L., Zha, S., & Paull, T. T. (2017). Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM. Molecular Cell,65, 91–104.

    CAS  PubMed  Google Scholar 

  • Ziv, Y., Bielopolski, D., Galanty, Y., et al. (2006). Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biology,8, 870–876.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant number 2017YFA0503900) and the Shenzhen Municipal Commission of Science and Technology Innovation (Grant number JCYJ20160427104855100 and JCYJ20170818092450901). The authors would like to recognize that there are many other valuable papers that could have been included in this review but space limitations prevented them all from being cited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Guo Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, Y., Tang, M. et al. Regulation of DNA damage-induced ATM activation by histone modifications. GENOME INSTAB. DIS. 1, 20–33 (2020). https://doi.org/10.1007/s42764-019-00004-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42764-019-00004-8

Keywords

Navigation