Skip to main content

Advertisement

Log in

Post-translational modifications of nuclear sirtuins

  • Review Article
  • Published:
Genome Instability & Disease Aims and scope Submit manuscript

Abstract

Silent information regulator proteins (SIRT), or sirtuins, are evolutionarily conserved NAD+-dependent deacetylases and ADP-mono-ribosyltransferases. In mammalian, seven sirtuins have been identified, namely SIRT1–7, with different subcellular localization. Nuclear sirtuins, including SIRT1, SIRT6 and SIRT7, localize predominantly in the nucleus and are implicated in many vital biological processes, including stress response, transcription, genome maintenance, tumorigenesis and aging. Dysregulation of nuclear sirtuins is associated with the development of many diseases, including cancer and metabolic disorders. Therefore, the activities of nuclear sirtuins must be properly regulated. In this review, we summarize the current knowledge on the post-translational modifications of nuclear sirtuins and discuss how these modifications modulate their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B. J., Castronovo, V., et al. (2007). Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. The Journal of Biological Chemistry,282, 33583–33592.

    CAS  PubMed  Google Scholar 

  • Back, J. H., Rezvani, H. R., Zhu, Y., Guyonnet-Duperat, V., Athar, M., Ratner, D., et al. (2011). Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of sirtuin 1. The Journal of Biological Chemistry,286, 19100–19108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai, B., Liang, Y., Xu, C., Lee, M. Y., Xu, A., Wu, D., et al. (2012). Cyclin-dependent kinase 5-mediated hyperphosphorylation of sirtuin-1 contributes to the development of endothelial senescence and atherosclerosis. Circulation,126, 729–740.

    CAS  PubMed  Google Scholar 

  • Barber, M. F., Michishita-Kioi, E., Xi, Y., Tasselli, L., Kioi, M., Moqtaderi, Z., et al. (2012). SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature,487, 114–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bian, Y., Song, C., Cheng, K., Dong, M., Wang, F., Huang, J., et al. (2014). An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. Journal of Proteomics,96, 253–262.

    CAS  PubMed  Google Scholar 

  • Buler, M., Andersson, U., & Hakkola, J. (2016). Who watches the watchmen? Regulation of the expression and activity of sirtuins. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology,30, 3942–3960.

    CAS  Google Scholar 

  • Cai, J., Zuo, Y., Wang, T., Cao, Y., Cai, R., Chen, F. L., et al. (2016). A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity. Oncogene,35, 4949–4956.

    CAS  PubMed  Google Scholar 

  • Caito, S., Rajendrasozhan, S., Cook, S., Chung, S., Yao, H., Friedman, A. E., et al. (2010). SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology,24, 3145–3159.

    CAS  Google Scholar 

  • Chalkiadaki, A., & Guarente, L. (2015). The multifaceted functions of sirtuins in cancer. Nature Reviews Cancer,15, 608–624.

    CAS  PubMed  Google Scholar 

  • Chen, S., Blank, M. F., Iyer, A., Huang, B., Wang, L., Grummt, I., et al. (2016). SIRT7-dependent deacetylation of the U3–55k protein controls pre-rRNA processing. Nature Communications,7, 10734.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Seiler, J., Santiago-Reichelt, M., Felbel, K., Grummt, I., & Voit, R. (2013). Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Molecular Cell,52, 303–313.

    CAS  PubMed  Google Scholar 

  • Choi, S. E., Kwon, S., Seok, S., Xiao, Z., Lee, K.-W., Kang, Y., et al. (2017). Obesity-linked phosphorylation of SIRT1 by casein kinase 2 inhibits its nuclear localization and promotes fatty liver. Molecular and Cellular Biology,37, e00006–00017.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science,325, 834–840.

    CAS  PubMed  Google Scholar 

  • Conrad, E., Polonio-Vallon, T., Meister, M., Matt, S., Bitomsky, N., Herbel, C., et al. (2016). HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism. Cell Death and Differentiation,23, 110–122.

    CAS  PubMed  Google Scholar 

  • Dalle-Donne, I., Aldini, G., Carini, M., Colombo, R., Rossi, R., & Milzani, A. (2006). Protein carbonylation, cellular dysfunction, and disease progression. Journal of Cellular and Molecular Medicine,10, 389–406.

    CAS  PubMed  Google Scholar 

  • Dephoure, N., Zhou, C., Villen, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., et al. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America,105, 10762–10767.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dowling, D. P., Gantt, S. L., Gattis, S. G., Fierke, C. A., & Christianson, D. W. (2008). Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors. Biochemistry,47, 13554–13563.

    CAS  PubMed  Google Scholar 

  • Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., et al. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science,334, 806–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, J., Ianni, A., Smolka, C., Vakhrusheva, O., Nolte, H., Krüger, M., et al. (2017). Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1. Proceedings of the National Academy of Sciences,114, E8352–E8361.

    CAS  Google Scholar 

  • Feldman, J. L., Baeza, J., & Denu, J. M. (2013). Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. The Journal of Biological Chemistry,288, 31350–31356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature,401, 188–193.

    CAS  PubMed  Google Scholar 

  • Flick, F., & Luscher, B. (2012). Regulation of sirtuin function by posttranslational modifications. Frontiers in Pharmacology,3, 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., & Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & Development,20, 1075–1080.

    CAS  Google Scholar 

  • Ford, J., Ahmed, S., Allison, S., Jiang, M., & Milner, J. (2008). JNK2-dependent regulation of SIRT1 protein stability. Cell Cycle,7, 3091–3097.

    CAS  PubMed  Google Scholar 

  • Gantt, S. L., Joseph, C. G., & Fierke, C. A. (2010). Activation and inhibition of histone deacetylase 8 by monovalent cations. The Journal of Biological Chemistry,285, 6036–6043.

    CAS  PubMed  Google Scholar 

  • Gerhart-Hines, Z., Dominy, J. E., Jr., Blattler, S. M., Jedrychowski, M. P., Banks, A. S., Lim, J. H., et al. (2011). The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Molecular Cell,44, 851–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, S., & Zhou, Z. (2015). SIRTain regulators of premature senescence and accelerated aging. Protein & Cell,6, 322–333.

    CAS  Google Scholar 

  • Grob, A., Roussel, P., Wright, J. E., McStay, B., Hernandez-Verdun, D., & Sirri, V. (2009). Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. Journal of Cell Science,122, 489–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, W., & Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell,90, 595–606.

    CAS  PubMed  Google Scholar 

  • Guo, X., Williams, J. G., Schug, T. T., & Li, X. (2010). DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. The Journal of Biological Chemistry,285, 13223–13232.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, S., Liu, H., Ha, Y., Luo, X., Motamedi, M., Gupta, M. P., et al. (2015). Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radical Biology & Medicine,79, 176–185.

    CAS  Google Scholar 

  • Imai, S., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature,403, 795–800.

    CAS  PubMed  Google Scholar 

  • Jackson, M. D., & Denu, J. M. (2002). Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. The Journal of Biological Chemistry,277, 18535–18544.

    CAS  PubMed  Google Scholar 

  • Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., et al. (2013). SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature,496, 110–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, L., Xiong, J., Zhan, J., Yuan, F., Tang, M., Zhang, C., et al. (2017). Ubiquitin-specific peptidase 7 (USP7)-mediated deubiquitination of the histone deacetylase SIRT7 regulates gluconeogenesis. The Journal of Biological Chemistry,292, 13296–13311.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaidi, A., Weinert, B. T., Choudhary, C., & Jackson, S. P. (2010). Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science,329, 1348–1353.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., et al. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature,483, 218–221.

    CAS  PubMed  Google Scholar 

  • Kang, H., Jung, J. W., Kim, M. K., & Chung, J. H. (2009). CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One,4, e6611.

    PubMed  PubMed Central  Google Scholar 

  • Kang, H., Suh, J. Y., Jung, Y. S., Jung, J. W., Kim, M. K., & Chung, J. H. (2011). Peptide switch is essential for Sirt1 deacetylase activity. Molecular Cell,44, 203–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, E. J., Kho, J. H., Kang, M. R., & Um, S. J. (2007). Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Molecular Cell,28, 277–290.

    CAS  PubMed  Google Scholar 

  • Kim, J. E., Chen, J., & Lou, Z. (2008). DBC1 is a negative regulator of SIRT1. Nature,451, 583–586.

    CAS  PubMed  Google Scholar 

  • Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., et al. (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Molecular Cell,23, 607–618.

    CAS  PubMed  Google Scholar 

  • Kornberg, M. D., Sen, N., Hara, M. R., Juluri, K. R., Nguyen, J. V., Snowman, A. M., et al. (2010). GAPDH mediates nitrosylation of nuclear proteins. Nature Cell Biology,12, 1094–1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau, A. W., Liu, P., Inuzuka, H., & Gao, D. (2014). SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. American Journal of Cancer Research,4, 245–255.

    PubMed  PubMed Central  Google Scholar 

  • Lee, C. W., Wong, L. L., Tse, E. Y., Liu, H. F., Leong, V. Y., Lee, J. M., et al. (2012). AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Research,72, 4394–4404.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Shi, L., Yang, S., Yan, R., Zhang, D., Yang, J., et al. (2016). SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nature Communications,7, 12235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Z., Yang, H., Kong, Q., Li, J., Lee, S. M., Gao, B., et al. (2012). USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Molecular Cell,46, 484–494.

    CAS  PubMed  Google Scholar 

  • Lin, Z., Yang, H., Tan, C., Li, J., Liu, Z., Quan, Q., et al. (2013). USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation. Cell Reports,5, 1639–1649.

    CAS  PubMed  Google Scholar 

  • Liszt, G., Ford, E., Kurtev, M., & Guarente, L. (2005). Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. The Journal of Biological Chemistry,280, 21313–21320.

    CAS  PubMed  Google Scholar 

  • Liu, X., Wang, D., Zhao, Y., Tu, B., Zheng, Z., Wang, L., et al. (2011). Methyltransferase Set7/9 regulates p53 activity by interacting with Sirtuin 1 (SIRT1). Proceedings of the National Academy of Sciences of the United States of America,108, 1925–1930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., et al. (2011). SIRT6 promotes DNA repair under stress by activating PARP1. Science,332, 1443–1446.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCord, R. A., Michishita, E., Hong, T., Berber, E., Boxer, L. D., Kusumoto, R., et al. (2009). SIRT6 stabilizes DNA-dependent Protein Kinase at chromatin for DNA double-strand break repair. Aging,1, 109–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature,452, 492–496.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C., & Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular Biology of the Cell,16, 4623–4635.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Min, J., Landry, J., Sternglanz, R., & Xu, R. M. (2001). Crystal structure of a SIR2 homolog-NAD complex. Cell,105, 269–279.

    CAS  PubMed  Google Scholar 

  • Miteva, Y. V., & Cristea, I. M. (2014). A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on its catalytic activity. Molecular & Cellular Proteomics,13, 168–183.

    CAS  Google Scholar 

  • Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L., et al. (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell,124, 315–329.

    CAS  PubMed  Google Scholar 

  • Nakamura, T., & Lipton, S. A. (2013). Emerging role of protein-protein transnitrosylation in cell signaling pathways. Antioxidants & Redox Signaling,18, 239–249.

    CAS  Google Scholar 

  • Nasrin, N., Kaushik, V. K., Fortier, E., Wall, D., Pearson, K. J., de Cabo, R., et al. (2009). JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One,4, e8414.

    PubMed  PubMed Central  Google Scholar 

  • Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., Cox, J., Jensen, T.S., Nigg, E.A., et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science signaling3, ra3.

  • Peng, C., Lu, Z., Xie, Z., Cheng, Z., Chen, Y., Tan, M., et al. (2011). The first identification of lysine malonylation substrates and its regulatory enzyme. Molecular & Cellular Proteomics,10(M111), 012658.

    Google Scholar 

  • Peng, L., Yuan, Z., Li, Y., Ling, H., Izumi, V., Fang, B., et al. (2015). Ubiquitinated sirtuin 1 (SIRT1) function is modulated during DNA damage-induced cell death and survival. The Journal of Biological Chemistry,290, 8904–8912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman, S., & Islam, R. (2011). Mammalian Sirt1: insights on its biological functions. Cell Communication and Signaling,9, 11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revollo, J. R., & Li, X. (2013). The ways and means that fine tune Sirt1 activity. Trends in Biochemical Sciences,38, 160–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronnebaum, S. M., Wu, Y., McDonough, H., & Patterson, C. (2013). The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical ubiquitination. Molecular and Cellular Biology,33, 4461–4472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, T., Maier, B., Koclega, K. D., Chruszcz, M., Gluba, W., Stukenberg, P. T., et al. (2008). Phosphorylation regulates SIRT1 function. PLoS One,3, e4020.

    PubMed  PubMed Central  Google Scholar 

  • Sauve, A. A., Celic, I., Avalos, J., Deng, H., Boeke, J. D., & Schramm, V. L. (2001). Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry,40, 15456–15463.

    CAS  PubMed  Google Scholar 

  • Sebastian, C., Zwaans, B. M., Silberman, D. M., Gymrek, M., Goren, A., Zhong, L., et al. (2012). The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell,151, 1185–1199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, B. C., & Denu, J. M. (2006). Sir2 protein deacetylases: evidence for chemical intermediates and functions of a conserved histidine. Biochemistry,45, 272–282.

    CAS  PubMed  Google Scholar 

  • Somoza, J.R., Skene, R.J., Katz, B.A., Mol, C., Ho, J.D., Jennings, A.J., Luong, C., Arvai, A., Buggy, J.J., Chi, E., et al. (2004). Structural snapshots of human HDAC8 provide insights into the Class I histone deacetylases. Structure 12, 1325–1334.

  • Sun, L., Fan, G., Shan, P., Qiu, X., Dong, S., Liao, L., et al. (2016). Regulation of energy homeostasis by the ubiquitin-independent REGgamma proteasome. Nature Communications,7, 12497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, M., Peng, C., Anderson, K. A., Chhoy, P., Xie, Z., Dai, L., et al. (2014). Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metabolism,19, 605–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tasselli, L., Xi, Y., Zheng, W., Tennen, R. I., Odrowaz, Z., Simeoni, F., et al. (2016). SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence. Nature Structural & Molecular Biology,23, 434.

    CAS  Google Scholar 

  • Thirumurthi, U., Shen, J., Xia, W., LaBaff, A.M., Wei, Y., Li, C.W., Chang, W.C., Chen, C.H., Lin, H.K., Yu, D., et al. (2014). MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Science signaling7, ra71.

    PubMed  PubMed Central  Google Scholar 

  • Toiber, D., Erdel, F., Bouazoune, K., Silberman, D. M., Zhong, L., Mulligan, P., et al. (2013). SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Molecular Cell,51, 454–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Meter, M., Simon, M., Tombline, G., May, A., Morello, T. D., Hubbard, B. P., et al. (2016). JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. Cell Reports,16, 2641–2650.

    PubMed  Google Scholar 

  • Vannini, A., Volpari, C., Filocamo, G., Casavola, E. C., Brunetti, M., Renzoni, D., et al. (2004). Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proceedings of the National Academy of Sciences of the United States of America,101, 15064–15069.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez, B. N., Thackray, J. K., Simonet, N. G., Kane-Goldsmith, N., Martinez-Redondo, P., Nguyen, T., et al. (2016). SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. The EMBO Journal,35, 1488–1503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali, G., Gershey, E. L., & Allfrey, V. G. (1968). Chemical studies of histone acetylation. The distribution of epsilon-N-acetyllysine in calf thymus histones. The Journal of Biological Chemistry,243, 6361–6366.

    CAS  PubMed  Google Scholar 

  • Wang, H., Liu, S., Liu, S., Wei, W., Zhou, X., Lin, F., et al. (2017). Enhanced expression and phosphorylation of Sirt7 activates smad2 and ERK signaling and promotes the cardiac fibrosis differentiation upon angiotensin-II stimulation. PLoS One,12, e0178530.

    PubMed  PubMed Central  Google Scholar 

  • Wen, L., Chen, Z., Zhang, F., Cui, X., Sun, W., Geary, G. G., et al. (2013). Ca2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proceedings of the National Academy of Sciences of the United States of America,110, E2420–2427.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakuchi, M. (2012). MicroRNA Regulation of SIRT1. Frontiers in Physiology,3, 68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, W.W., Liang, Y.L., Zhang, Q.X., Wang, D., Lei, M.Z., Qu, J., He, X.H., Lei, Q.Y., Wang, Y.P. (2018). Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. EMBO Reports, e46377.

  • Yang, B., Zwaans, B. M., Eckersdorff, M., & Lombard, D. B. (2009). The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle (Georgetown, Tex),8, 2662–2663.

    CAS  Google Scholar 

  • Yang, Y., Fu, W., Chen, J., Olashaw, N., Zhang, X., Nicosia, S. V., et al. (2007). SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nature Cell Biology,9, 1253–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J., & Auwerx, J. (2009). The role of sirtuins in the control of metabolic homeostasis. Annals of the New York Academy of Sciences,1173(Suppl 1), E10–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, J., Luo, K., Liu, T., & Lou, Z. (2012). Regulation of SIRT1 activity by genotoxic stress. Genes & development,26, 791–796.

    CAS  Google Scholar 

  • Zhao, W., Kruse, J. P., Tang, Y., Jung, S. Y., Qin, J., & Gu, W. (2008). Negative regulation of the deacetylase SIRT1 by DBC1. Nature,451, 587–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zschoernig, B., & Mahlknecht, U. (2009). Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochemical and biophysical research communications,381, 372–377.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Zhou, Z. Post-translational modifications of nuclear sirtuins. GENOME INSTAB. DIS. 1, 34–45 (2020). https://doi.org/10.1007/s42764-019-00001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42764-019-00001-x

Keywords

Navigation