Skip to main content
Log in

Large eddy simulation of multiphase flows using the volume of fluid method: Part 1—Governing equations and a priori analysis

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

Compared to Large Eddy Simulation (LES) of single-phase flows, which has become a mature and viable turbulence modelling technique, the LES of two-phase flows with moving immiscible interfaces is at a rather early development stage. There is no standard set of governing equations for two-phase flow LES, but rather a variety of different formulations, all with advantages and disadvantages. This paper discusses and analyses in detail the governing equations for two-phase flow LES in the context of the Volume of Fluid method, as well as suitable Subgrid Scale closures for the different unknown terms. A particular focus is on the Favre filtered one fluid formulation of the momentum equations, but a comparison with the filtered and the volume averaged version of the balance equations is made as well. Differences and commonalities between the different approaches are discussed and, based on a priori analysis of explicitly filtered Direct Numerical Simulation data, suitable closure models for a posteriori analysis are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Alajbegovic, A. 2001. Large-eddy simulation formalism applied to multiphase flows. In: Proceedings of ASME 2001 Fluids Engineering Division Summer Meeting, 529–534.

  • Aniszewski, W., Boguslawski, A., Marek, M., Tyliszczak, A. 2012. A new approach to sub-grid surface tension for LES of two-phase flows. J Comput Phys, 231: 7368–7397.

    Article  MathSciNet  Google Scholar 

  • Buonfiglioli, M., Mendonça, F. 2005. LES-VOF simulation of primary diesel spray break-up with synthetic inlet perturbations. In: Proceedings of the 18th International Conference on Liquid Atomization and Spray Systems, 93.

  • Chesnel, J., Menard, T., Reveillon, J., Demoulin, F. X. 2011a. Subgrid analysis of liquid jet atomization. Atomization Spray, 21: 41–67.

    Article  Google Scholar 

  • Chesnel, J., Reveillon, J., Menard, T., Demoulin, F. X. 2011b. Large eddy simulation of liquid jet atomization. Atomization Spray, 21: 711–736.

    Article  Google Scholar 

  • Clark, R. A., Ferziger, J. H., Reynolds, W. C. 1979. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J Fluid Mech, 91: 1–16.

    Article  Google Scholar 

  • De Villiers, E., Gosman, A., Weller, H. 2004. Large eddy simulation of primary diesel spray atomization. SAE Technical Paper 2004-01-0100.

  • Fulgosi, M., Lakehal, D., Banerjee, S., de Angelis, V. 2003. Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J Fluid Mech, 482: 319–345.

    Article  Google Scholar 

  • Garnier, E., Adams, N., Sagaut, P. 2009. Large Eddy Simulation for Compressible Flows. Dordrecht: Springer Netherlands.

    Book  Google Scholar 

  • Hasslberger, J., Ketterl, S., Klein, M., Chakraborty, N. 2019. Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis. J Fluid Mech, 859: 819–838.

    Article  MathSciNet  Google Scholar 

  • Hasslberger, J., Klein, M., Chakraborty, N. 2018. Flow topologies in bubble-induced turbulence: A direct numerical simulation analysis. J Fluid Mech, 857: 270–290.

    Article  MathSciNet  Google Scholar 

  • Herrmann, M. 2013. A sub-grid surface dynamics model for sub-filter surface tension induced interface dynamics. Comput Fluids, 87: 92–101.

    Article  MathSciNet  Google Scholar 

  • Herrmann, M. 2015. A dual-scale LES subgrid model for turbulent liquid/gas phase interface dynamics. In: Proceedings of the 15th International Symposium on Numerical Methods for Multiphase Flow, Paper No. AJKFluids2015-21052.

  • Ishii, M. 1975. Thermo-fluid dynamic theory of two-phase flow. NASA Sti/recon Technical Report A.

  • Joshi, J. B. 2001. Computational flow modelling and design of bubble column reactors. Chem Eng Sci, 56: 5893–5933.

    Article  Google Scholar 

  • Kempf, A. M., Wysocki, S., Pettit, M. 2012. An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput Fluids, 60: 58–60.

    Article  MathSciNet  Google Scholar 

  • Ketterl, S., Klein, M. 2018. A-priori assessment of subgrid scale models for large-eddy simulation of multiphase primary breakup. Comput Fluids, 165: 64–77.

    Article  MathSciNet  Google Scholar 

  • Klein, M., Chakraborty, N., Gao, Y. 2016. Scale similarity based models and their application to subgrid scale scalar flux modelling in the context of turbulent premixed flames. Int J Heat Fluid Flow, 57: 91–108.

    Article  Google Scholar 

  • Klein, M., Sadiki, A., Janicka, J. 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys, 186: 652–665.

    Article  Google Scholar 

  • Kobayashi, H. 2005. The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys Fluids, 17: 045104.

    Article  Google Scholar 

  • Kobayashi, H. 2018. Improvement of the SGS model by using a scale-similarity model based on the analysis of SGS force and SGS energy transfer. Int J Heat Fluid Flow, 72: 329–336.

    Article  Google Scholar 

  • Labourasse, E., Lacanette, D., Toutant, A., Lubin, P., Vincent, S., Lebaigue, O., Caltagirone, J. P., Sagaut, P. 2007. Towards large eddy simulation of isothermal two-phase flows: Governing equations and a priori tests. Int J Multiphase Flow, 33: 1–39.

    Article  Google Scholar 

  • Lakehal, D., Smith, B. L., Milelli, M. 2002. Large-eddy simulation of bubbly turbulent shear flows. J Turbul, 3, DOI: https://doi.org/10.1088/1468-5248/3/1/025.

    Article  Google Scholar 

  • Larocque, J., Vincent, S., Lacanette, D., Lubin, P., Caltagirone, J. P. 2010. Parametric study of LES subgrid terms in a turbulent phase separation flow. Int J Heat Fluid Flow, 31: 536–544.

    Article  Google Scholar 

  • Lefebvre, A. H. 1989. Atomization and Sprays. Hemisphere Publishing Corporation.

    Google Scholar 

  • Ling, Y., Zaleski, S., Scardovelli, R. 2015. Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model. Int J Multiphase Flow, 76: 122–143.

    Article  MathSciNet  Google Scholar 

  • Liovic, P., Lakehal, D. 2007a. Interface-turbulence interactions in large-scale bubbling processes. Int J Heat Fluid Flow, 28: 127–144.

    Article  Google Scholar 

  • Liovic, P., Lakehal, D. 2007b. Multi-physics treatment in the vicinity of arbitrarily deformable gas-liquid interfaces. J Comput Phys, 222: 504–535.

    Article  MathSciNet  Google Scholar 

  • Liovic, P., Lakehal, D. 2012. Subgrid-scale modelling of surface tension within interface tracking-based large eddy and interface simulation of 3D interfacial flows. Comput Fluids, 63: 27–46.

    Article  MathSciNet  Google Scholar 

  • Liu, S. W., Meneveau, C., Katz, J. 1994. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J Fluid Mech, 275: 83–119.

    Article  Google Scholar 

  • Lu, J. C., Tryggvason, G. 2008. Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys Fluids, 20: 040701.

    Article  Google Scholar 

  • Mitran, S. M. 2000. Closure Models for the Compuation of Dilute Bubbly Flows. Forschungszentrum Karlsruhe GmbH, Karlsruhe.

    Google Scholar 

  • Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., Lee, J. 2011. Using singular values to build a subgrid-scale model for large eddy simulations. Phys Fluids, 23: 085106.

    Article  Google Scholar 

  • Sabisch, W. 2000. Dreidimensionale numerische Simulation der Dynamik von aufsteigenden Einzelblasen und Blasenschwärmen mit einer Volume-of-Fluid Methode. Forschungszentrum Karlsruhe, Wissenschaftliche Berichte FZKA 6478.

    Google Scholar 

  • Sabisch, W., Wörner, M., Grötzbach, G., Cacuci, D. G. 2001. 3D volume-of-fluid simulation of wobbling bubble in a gas-liquid system of low Morton number. In: Proceedings of the 4th International Conference on Multiphase Flow.

  • Sagaut, P. 2002. Large Eddy Simulation for Incompressible Flows. Springer Berlin Heidelberg.

    Book  Google Scholar 

  • Schumann, U. 1975. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comput Phys, 18: 376–404.

    Article  Google Scholar 

  • Shinjo, J., Umemura, A. 2011. Detailed simulation of primary atomization mechanisms in diesel jet sprays (isolated identification of liquid jet tip effects). P Combust Inst, 33: 2089–2097.

    Article  Google Scholar 

  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon Wea Rev, 91: 99–164.

    Article  Google Scholar 

  • Toutant, A., Chandesris, M., Jamet, D., Lebaigue, O. 2009. Jump conditions for filtered quantities at an under-resolved discontinuous interface. Part 1: Theoretical development. Int J Multiphase Flow, 35: 1100–1118.

    Article  Google Scholar 

  • Toutant, A., Labourasse, E., Lebaigue, O., Simonin, O. 2008. DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: A priori tests for LES two-phase flow modelling. Comput Fluids, 37: 877–886.

    Article  MathSciNet  Google Scholar 

  • Tryggvason, G., Dabiri, S., Aboulhasanzadeh, B., Lu, J. C. 2013. Multiscale considerations in direct numerical simulations of multiphase flows. Phys Fluids, 25: 031302.

    Article  Google Scholar 

  • Tryggvason, G., Scardovelli, R., Zaleski, S. 2011. Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press.

    MATH  Google Scholar 

  • Vincent, S., Larocque, J., Lacanette, D., Toutant, A., Lubin, P., Sagaut, P. 2008. Numerical simulation of phase separation and a priori two-phase LES filtering. Comput Fluids, 37: 898–906.

    Article  MathSciNet  Google Scholar 

  • Vreman, A. W. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys Fluids, 16: 3670.

    Article  Google Scholar 

  • Vreman, B., Geurts, B., Kuerten, H. 1995. A priori tests of large eddy simulation of the compressible plane mixing layer. J Eng Math, 29: 299–327.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Support by the German Research Foundation (DFG, KL1456/1-1 and KL1456/4-1) is gratefully acknowledged. Computer resources for this project have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under Grant No. pr48no. The authors also express their gratitude to the developers of PARIS for providing the source code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Klein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, M., Ketterl, S. & Hasslberger, J. Large eddy simulation of multiphase flows using the volume of fluid method: Part 1—Governing equations and a priori analysis. Exp. Comput. Multiph. Flow 1, 130–144 (2019). https://doi.org/10.1007/s42757-019-0019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0019-9

Keywords

Navigation