Skip to main content
Log in

Lethal and sublethal effects of clothianidin, imidacloprid and sulfoxaflor on the wheat aphid, Schizaphis graminum (Hemiptera: Aphididae) and its coccinellid predator, Coccinella septempunctata

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The use of pesticides for greenbug, Schizaphis graminum in wheat not only can manage the pest population but also can influence its predator, Coccinella septempunctata. Acute and chronic effects of imidacloprid, clothianidin and sulfoxaflor on S. graminum and its predator, C. septempunctata were investigated. The results showed that LC50 of imidacloprid, clothianidin and sulfoxaflor to S. graminum at 48 h was 9.80, 34.29 and 4.40 ml a.i. L−1, respectively, while LC50 of imidacloprid, clothianidin and sulfoxaflor to C. septempunctata at 48 h was 107.80, 49.52 and 379.26 ml a.i. L−1. Sulfoxaflor and clothianidin were found the most toxic to S. graminum and C. septempunctata, respectively. Tested sublethal doses (LC10 and LC30) of all insecticides had significant effects on percent repellency of both S. graminum and C. septempunctata. Sulfoxaflor and clothianidin proved the most repellent to S. graminum (67.00 ± 2.03% at LC10 and 86.20 ± 1.62% at LC30) and C. septempunctata (50.60 ± 2.81% at LC10 and 60.00 ± 3.26% at LC30), respectively. Sublethal doses also demonstrated significant and the lowest percentage reduction in feeding by C. septempunctata on S. graminum in sulfoxaflor treatment (LC10: 4.13 ± 0.61%; LC30: 5.26 ± 0.69%). Additionally, sublethal doses reduced body-weight of C. septempunctata adults emerged from its treated grubs. These results revealed that sublethal doses of sulfoxaflor, imidacloprid and clothianidin negatively affected the biological activities of S. graminum and C. septempunctata as compared to control. Hence it can be concluded that more attention should be paid towards strategic application of these chemicals as a part of an integrated pest management program for an agro-ecosystem exhibiting maximum activity of coccinelid-predators. Overall, sulfoxaflor proved more appropriate for use against S. graminum in C. septempunctata manipulated agro-ecosystem. However, C. septempunctata compatible integration-strategy for field-application of sulfoxaflor should be devised to enhance its effectiveness against S. graminum and selectivity against C. septempunctata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SAR:

Structure activity relationship

SP3 :

Mixing character of one 2 s-orbital and three 2p-orbitals to create four hybrid orbitals with similar characteristics

CF3 :

Trifluoromethyl

nAChR:

Nicotinic acetylcholine receptors

L:D:

Light:Dark

SL:

Soluble liquid

SC:

Suspension concentrate

C1 :

Highest concentration of stock solution

C2 :

Serial dilution from stock solution

sec:

Second(s)

min:

Minute(s)

d:

Day(s)

h:

Hour(s)

LC:

Lethal concentration

LC10 :

Lethal concentration required to kill 10% of insects

LC30 :

Lethal concentration required to kill 30% of insects

LC50 :

Lethal concentration required to kill 50% of insects

Nc :

Number of insects on the control half

Nt :

Number of insects on the treated half

Fc :

Number of prey consumed in control unit

Ft :

Number of prey consumed in treated unit

ANOVA:

Analysis of variance

Tukey’s HSD test:

Tukey’s Honestly Significant Difference test

CNS:

Central nervous system

IPM:

Integrated pest management

FDR:

Field Recommended Dose

ml/a:

milliliter per acre

a.i.:

Active ingredients; CL, Confidence interval; SE, Standard error; χ2, Chi-square; df, Degree of freedom

References

  • Akhtar MS, Parveen S (2002) Studies on population of wheat aphids on wheat crop in new campus area, Lahore. Punjab Univ J Zool 17:14–22

    Google Scholar 

  • Akhtar N, Ashfaque M, Gillani WA, Ata-ul-Mohsin TA, Begum I (2010) Antibiosis resistance in national uniform wheat yield trials against Rhopalosiphum padi (L.). Pak J Agric Res 23(1–2):59–63

    Google Scholar 

  • Alavanja MCR, Hoppin JA, Kamel F (2004) Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annu Rev Public Health 25:155–197

    PubMed  Google Scholar 

  • Ali A, Memon SA, Mastoi AH, Narejo MN, Azizullah AM, Ahmed S (2017) Biology and feeding potential of ladybird beetle (Coccinella septempunctata) against different species of aphids. Sci Int (Lahore) 29(6):1261–1263

    Google Scholar 

  • Atta B, Gogi MD, Arif MJ, Mustafa F, Raza MF, Hussain MJ, Farooq MA, Nisar MJ, Iqbal M (2015) Toxicity of some insect growth regulators (IGRs) against different life stages of dusky cotton bugs Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae: Oxycareninae). Bulg J Agric Sci 21(2):367–371

    Google Scholar 

  • Atta B, Rizwan M, Sabir AM, Gogi MD, Sabar M, Bakhtawar AF, Sarwar M (2020) Toxic and repellent characteristics of some plant extracts used against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) improve the grain quality of stored wheat. J Innov Sci 6(1):1–11

    CAS  Google Scholar 

  • Ayyanath MM, Cutler GC, Scott-Dupree CD, Prithiviraj B, Kandasamy S, Prithiviraj K (2014) Gene expression during imidacloprid-induced hormesis in green peach aphid. Dose-Response 12(3):480–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Babcock JM, Gerwick CB, Huang JX, Loso MR, Nakamura G, Nolting SP, Rogers RB, Sparks TC, Thomas J, Watson GB, Zhu Y (2011) Biological characterization of sulfoxaflor, a novel insecticide. Pest Manag Sci 67:328–334

    CAS  PubMed  Google Scholar 

  • Bacci L, Convertini S, Rossaro B (2018) A review of sulfoxaflor, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J Entomol Acarolog Res 50(3):51–71

    Google Scholar 

  • Bao HB, Liu SH, Gu JH, Wang XZ, Liang XL, Liu ZW (2009) Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper Nilaparvata lugens. Pest Manag Sci 65:170–174

    CAS  PubMed  Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22(1):119–134

    CAS  Google Scholar 

  • Charpentier G, Louat F, Bonmatin JM, Marchand PA, Vanier F, Locker D, Decoville M (2014) Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environ Sci Technol 48(7):4096–4102

    CAS  PubMed  Google Scholar 

  • Chen X, Ma K, Li F, Liang P, Liu Y, Guo T, Song D, Desneux N, Gao X (2016) Sublethal and transgenerational effects of sulfoxaflor on the biological traits of the cotton aphid, Aphis gossypii glover (Hemiptera: Aphididae). Ecotoxicology 25:1841–1848

    CAS  PubMed  Google Scholar 

  • Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Asp Med 22:217–246

    CAS  Google Scholar 

  • Cui L, Sun L, Yang D, Yan X, Yuan H (2012) Effects of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, on the feeding behaviour of Sitobion avenae. Pest Manag Sci 68(11):1484–1491

    CAS  PubMed  Google Scholar 

  • Cutler GC (2013) Insect, insecticide and Hormesis: evidence and considerations for study. Dose-Response 11:154–177

    CAS  PubMed  Google Scholar 

  • Danho M, Gaspar C, Haubruge E (2002) The impact of grain quantity on the biology of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae): oviposition, distribution of eggs, adult emergence, body weight, and sex ratio. J Stored Prod Res 38:259–266

    Google Scholar 

  • Daniels M, Bale JS, Newbury HJ, Lind RJ, Pritchard J (2009) A sublethal dose of thiamethoxam causes a reduction in xylem feeding by the bird cherry-oat aphid (Rhopalosiphum padi), which is associated with dehydration and reduced performance. J Insect Physiol 55:758–765

    CAS  PubMed  Google Scholar 

  • de Castro AA, Corrêa AS, Legaspi JC, Guedes RNC, Serrã JE, Zanuncio JC (2012) Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere 93(6):1043–1050

    Google Scholar 

  • de França SM, Breda MO, Barbosa DR, Araujo AM, Guedes CA (2017) The sublethal effects of insecticides in insects. Biological control of pest and vector insects. intechopen. p.23

  • Deng ZZ, Zhang F, Wu ZL, Yu ZY (2016) Chlorpyrifos-induced hormesis in insecticide-resistant and -susceptible Plutella xylostella under normal and high temperatures. Bull Entomol Res 106(3):378–386

    CAS  PubMed  Google Scholar 

  • Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17

    PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  PubMed  Google Scholar 

  • Devine GJ, Harling ZK, Scarr AW, Devonshire AL (1996) Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus nicotianae and Myzus persicae. Pestic Sci 48:57–62

    CAS  Google Scholar 

  • Ding J, Zhao Y, Zhang Z, Xu C, Mu W (2018) Sublethal and Hormesis effects of Clothianidin on the black cutworm (Lepidoptera: Noctuidae). J Econ Entomol 111(6):2809–2816

    CAS  PubMed  Google Scholar 

  • El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. Insecticides-Development of safer and more effective technologies. In: Insecticides: development of safer and more effective technologies (ISBN 978–953–51-0958-7). Intech Open Access Publisher 3–56 pp.

  • Fang Y, Wang J, Luo C, Wang R (2018) Lethal and sublethal effects of Clothianidin on the development and reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae) MED and MEAM1. J Insect Sci 18(2):37

    PubMed Central  Google Scholar 

  • Fernandes MES, Alves FM, Pereira RC, Aquino LA, Fernandes FL, Zanuncio JC (2016) Lethal and sublethal effects of seven insecticides on three beneficial insects in laboratory assays and field trials. Chemosphere 156:45–55

    CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, Cambridge

  • Gerami S, Jahromi KT, Ashouri A, Rasoulian G, Heidari A (2005) Sublethal effects of imidacloprid and pymetrozine on the life table parameters of Aphis gossypii glover (Homoptera: Aphididae). Commun Appl Biol Sci 70:779–785

    CAS  Google Scholar 

  • Gogi MD, Sarfraz RM, Dosdall LM, Arif MJ, Keddie AB, Ashfaq M (2006) Effectiveness of two insect growth regulators against Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and their impact on population densities of arthropod predators in cotton in Pakistan. Pest Manag Sci 62:982990

    Google Scholar 

  • Gonalons C, Farina WM (2015) Effects of sublethal doses of imidacloprid on young adult honeybee behaviour. PLoS One 10(10):e0140814

    Google Scholar 

  • Guedes RNC, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70:690–697

    CAS  PubMed  Google Scholar 

  • Guedes NMP, Tolledo J, Corrêa AS, Guedes RNC (2010) Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais. J Appl Entomol 134(2):142–148

    CAS  Google Scholar 

  • Guedes R, Smagghe G, Stark J, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:43–62

    CAS  PubMed  Google Scholar 

  • Guo L, Desneux N, Sonoda S, Liang P, Han P, Gao XW (2013) Sublethal and transgenerational effects of chlorantraniliprole on bilological traits of the diamondback moth, Plutella xylostella L. Crop Prot 48:29–34

    CAS  Google Scholar 

  • Guoyong L, Yan W, Yangyang L, Xiangsheng C (2018) Insecticides resistance and detoxification enzymes activity changes in brown planthopper, Nilaparvata lugens in Guizhou Province. Acta Ecol Sin 39(3):234–241

    Google Scholar 

  • Hadi BAR, Garcia CPF, Heong KL (2015) Susceptibility of Nilaparvata lugens (Hemipteran: Delphacidae) populations in the Philippines to insecticides. Crop Prot 76:100–102

    CAS  Google Scholar 

  • Han W, Zhang S, Shen F, Liu M, Ren C, Gao X (2012) Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 68(8):1184–1190

    CAS  PubMed  Google Scholar 

  • He Y, Zhao J, Zheng Y, Desneux N, Wu KG (2012) Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21:1291–1300

    CAS  PubMed  Google Scholar 

  • Hirata K (2016) Studies on the mode of action of neurotoxic insecticides. J Pestic Sci 41(3):87–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inayat TP, Rana SA, Rana N, Ruby T, Sadiqui MJI, Abbas MN (2011) Predation rate in selected coccinellid (coleoptera) predators on some major aphidid and cicadellid (hemipteran) pests. Int J Agric Biol 13:427–430

    Google Scholar 

  • Inayatullah C (1985) Greenbug biotypes in relation to host plant resistance. USDA & Oklahoma State University, Stillwater

  • Jam NA, Kocheyli F, Mossadegh MS, Rasekh A, Saber M (2014) Lethal and sublethal effects of imidacloprid and pirimicarb on the melon aphid, Aphis gossypii glover (Hemiptera: Aphididae) under laboratory conditions. J Crop Prot 3(1):89–98

    Google Scholar 

  • Jiang J, Zhang Z, Yu X, Ma D, Yu C, Liu F, Mu W (2018) Influence of lethal and sublethal exposure to clothianidin on the seven-spotted lady beetle, Coccinella septempunctata L. (Coleoptera: Coccinellidae). Ecotoxicol Environ Saf 161:208–213

    CAS  PubMed  Google Scholar 

  • Juan-juan X, Wen-xin YU, Xiao-qing YI, Jun-ping GAO, Xi-wu GAO, Xiao-peng ZENG (2019) Sublethal effects of sulfoxaflor on the fitness of two species of wheat aphids, Sitobion avenae (F.) and Rhopalosiphum padi (L.). J Integr Agric 18(7):1613–1623

    Google Scholar 

  • Kajita H (1979) Effects of temperature and humidity on fecundity and longevity of Encarsia formosa Gahan, an introduced parasite of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Proc Assoc Plant Prot Kyushu 25:112–114

    Google Scholar 

  • Komblas KN, Long WH (1972) Field studies of aphid vectors of sugarcane mosaic. J Econ Entomol 65(2):439–445

    Google Scholar 

  • Koo HN, Lee SW, Yun SH, Kim HK, Kim GH (2015) Feeding response of the cotton aphid, Aphis gossypii, to sublethal rates of flonicamid and imidacloprid. Entomol Exp Appl 154:110–119

    CAS  Google Scholar 

  • Lashkari MR, Sahragard A, Ghadamyari M (2007) Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne brassicae on rapeseed, Brassica napus L. Insect Sci 14(3):207–212

    CAS  Google Scholar 

  • Laurent FM, Rathahao E (2003) Distribution of [14C]- imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J Agric Food Chem 51:8005–8010

    CAS  PubMed  Google Scholar 

  • Lee CY (2000) Sublethal effects of insecticide on longevity, fecundity, and behaviour of insect pests: a review. Biosci J 11:107–112

    Google Scholar 

  • Li W, Lu Z, Li L, Yu Y, Dong S, Men X, Ye B (2018) Sublethal effects of imidacloprid on the performance of the bird cherry-oat aphid Rhopalosiphum padi. PLoS One 13(9):e0204097

    PubMed  PubMed Central  Google Scholar 

  • Liang P, Tian YA, Biondi A, Desneux N, Gao XW (2012) Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:1889–1898

    CAS  PubMed  Google Scholar 

  • Lu YH, Gao XW (2009) Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull Entomol Res 99:611–617

    CAS  PubMed  Google Scholar 

  • Lucas E, Gagné I, Coderre D (2002) Impact of the arrival of Harmonía axyridis on adults of Coccinella septempunctata and Coleomegilla maculata (Coleóptera: Coccinellidae). Eur J Entomol 99:457–463

    Google Scholar 

  • Meikle WG, Adamczyk JJ, Weiss M, Gregorc A, Johnson DR, Stewart SD, Zawislak J, Carroll MJ, Lorenz GM (2016) Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the U.S. PLoS One 11(12):e0168603

    PubMed  PubMed Central  Google Scholar 

  • Mensah RK, Madden JL (1993) Life history and biology of Ctenarytania thysanura Ferris (Hemiptera, Psyllidae) on Boronia megastigma Nees ex Bartl. (Rutaceae) in Tasmania. J Aust Entomol Soc 32:327–337

    Google Scholar 

  • Morse JG (1998) Agricultural implications of pesticide-induced hormesis of insects and mites. Hum Exp Toxicol 17:266–269

    CAS  PubMed  Google Scholar 

  • Morse JG, Zareh N (1991) Pesticide-induced hormoligosis of citrus thrips (Thysanoptera: Thripidae) fecundity. J Econ Entomol 84:1169–1174

    CAS  Google Scholar 

  • Mozaddedul HNM, Hasan HMM, Rezaul KANM (2002) Insecticide Hormoligosis on Brown Planthopper, Nilaparvata lugens (Stål) in resistant and susceptible Rice varieties of Bangladesh. Pak J Biol Sci 5:915–918

    Google Scholar 

  • Nauen R, Koob B, Elbert A (1998) Antifeedant effects of sublethal dosages of imidacloprid on Bemisia tabaci. Entomol Exp Appl 88:287–293

    CAS  Google Scholar 

  • Ngwej LM, Hattingh I, Mlambo G, Mashat EM, Kashala JCK, Malonga FK, Bangs MJ (2019) Indoor residual spray bio-efficacy and residual activity of a clothianidin-based formulation (SumiShield® 50WG) provides long persistence on various wall surfaces for malaria control in the Democratic Republic of the Congo. Malar J 18:72

  • Pettersson J (1971) An aphid sex attractant. Insect Syst Evol 2(2):6–93

    Google Scholar 

  • Piiroinen S, Lindström L, Lyytinen A, Mappes J, Chen YH, Izzo V, Grapputo A (2013) Pre-invasion history and demography shape the genetic variation in the insecticide resistance-related acetylcholinesterase 2 gene in the invasive Colorado potato beetle. BMC Evol Biol 13:1–13

    Google Scholar 

  • Piiroinen S, Boman S, Lyytinen A, Mappes J, Lindström L (2014) Sublethal effects of deltamethrin exposure of parental generations on physiological traits and overwintering in Leptinotarsa decemlineata. J Appl Entomol 138:149–158

    CAS  Google Scholar 

  • Plumb RT (1983) Barley yellow dwarf virus: a global problem. In: Plumb RT, Thresh JM (eds) Plant virus epidemiology, The spread and control of insect-borne viruses. Blackwell Scientific Publications, Oxford, pp 185–198

    Google Scholar 

  • Qu YY, Xiao D, Li JY, Chen Z, Biondi A, Desneux N, Gao X, Song D (2015) Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicol 24:479–487

  • Rizvi NH, Hussain T, Ali SS, Rajput MR, Ahmed M, Shakoori AR (1994) Comparative predatory behaviour of larvae and adults of Coccinella septempunctata L. Proc Pak Congr Zool 12:285–289

    Google Scholar 

  • Sadeghi A, Van Damme EJM, Smagghe G (2009) Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. J Insect Sci 9(1):65

    PubMed Central  Google Scholar 

  • Saleem MS, Akbar MF, Sultan A, Ali S (2018) An environment friendly pest management strategy through biorational insecticides against Amrasca Devastans Dist. On Brinjal crop. Sarhad J Agric 34(3):583–588

    Google Scholar 

  • Saran RK, Ziegler M, Kudlie S, Harrison D, Leva DM, Scherer C, Coffelt MA (2014) Behavioral effects and tunneling responses of eastern subterranean termites (Isoptera: rhinotermitidae) exposed to chlorantraniliprole-treated soils. J Econ Entomol 107:1878–1889

    PubMed  Google Scholar 

  • Sarmad SA, Afzal M, Raza ABM, Khalil MS, Khalil H, Aqueel MA, Mansoor MM (2015) Feeding efficacy of Coccinella septempunctata and Propylea quatuordecimpunctata against Macrosiphum rosae. Sci Agric 12(2):105–108

    Google Scholar 

  • Schwarz T, Frank T (2019) Aphid feeding by lady beetles: higher consumption at higher temperature. BioControl 64(3):323–332

    Google Scholar 

  • Sial MU, Zhao Z, Zhang L, Zhang Y, Mao L, Jiang H (2018) Evaluation of insecticides induced hormesis on the demographic parameters of Myzus persicae and expression changes of metabolic resistance detoxification genes. Sci Rep 8:16601

    PubMed  PubMed Central  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22(1):5–34

    CAS  Google Scholar 

  • Singh JP, Marwaha KK (2000) Effects of sublethal concentrations of some insecticides on growth and development of maize stalk borer, Chilo partellus (Swinhoe) larvae. Shashpa 7:181–186

    CAS  Google Scholar 

  • Sohn L, Brodie RJ, Couldwell G, Demmons E, Sturve J (2018) Exposure to a nicotinoid pesticide reduces defensive behaviors in a non-target organism, the rusty crayfish Orconectes rusticus. Ecotoxicology 27:900–907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sohrabi F, Shishehbor P, Saber M, Mosaddegh MS (2013) Lethal and sublethal effects of imidacloprid and buprofezin on the sweetpotato whitefly parasitoid Eretmocerus mundus (Hymenoptera: Aphelinidae). Crop Prot 45:98–103

    CAS  Google Scholar 

  • Sparks TC, DeBoer GJ, Wang NX, Hasler JM, Loso MR, Watson GB (2012) Differential metabolism of sulfoximine and neonicotinoid insecticides by Drosophila melanogaster monooxygenase CYP6G1. Pestic Biochem Physiol 103:159–165

    CAS  Google Scholar 

  • Sparks TC, Watson GB, Loso MR, Geng C, Babcock JM, Thomas JD (2013) Sulfoxaflor and the sulfoximine insecticides: chemistry, mode of action and basis for efficacy on resistant insects. Pestic Biochem Physiol 107:1–7

    CAS  PubMed  Google Scholar 

  • Tan Y, Biondi A, Desneux N, Gao XW (2012) Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-dür). Ecotoxicology 21:1989–1997

    CAS  PubMed  Google Scholar 

  • Tang Q, Xiang M, Hu H, An C, Gao X (2015) Evaluation of sublethal effects of sulfoxaflor on the green peach aphid (Hemiptera: Aphididae) using life table parameters. J Econ Entomol 108(6):2720–2728

    CAS  PubMed  Google Scholar 

  • Tang Q, Ma K, Chi H, Hou Y, Gao X (2019) Transgenerational hormetic effects of sublethal dose of flupyradifurone on the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). PLoS One 14(1):e0208058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tengfei L, Yao W, Lixia Z, Yongyu X, Zhengqun Z, Wei M (2019) Sublethal effects of four insecticides on the seven spotted lady beetle (Coleoptera: Coccinellidae). J Econ Entomol 112(5):2177–2185

    PubMed  Google Scholar 

  • Unal S, Er A, Akkuzu E, Šálek L (2017) Predation efficacy of the predator Coccinella septempunctata L. on the aphid species Macrosiphum rosae (L.) in Kastamonu Province, Turkey. Pak J Zool 49(1):345–349

    Google Scholar 

  • Wang NX, Watson GB, Loso MR, Sparks TC (2016) Molecular modeling of sulfoxaflor and neonicotinoid binding in insect nicotinic acetylcholine receptors: impact of the Myzus β1 R81T mutation. Pest Manag Sci 72(8):1467–1474

    CAS  PubMed  Google Scholar 

  • Watson GB, Olson MB, Beavers KW, Loso MR, Sparks TC (2017) Characterization of a nicotinic acetylcholine receptor binding site for sulfoxaflor, a new sulfoximine insecticide for the control of sap-feeding insect pests. Pestic Biochem Physiol 143:90–94

    CAS  PubMed  Google Scholar 

  • Xiao D, Yang T, Desneux N, Han P, Gao X (2015) Assessment of sublethal and transgenerational effects of pirimicarb on the wheat aphids Rhopalosiphum padi and Sitobion avenae. PLoS One 10(6):e0128936

    PubMed  PubMed Central  Google Scholar 

  • Xiao D, Zhao J, Guo X, Chen H, Qu M, Zhai W, Desneux N, Biondi A, Zhang F, Wang S (2016) Sublethal effects of imidacloprid on the predatory seven-spot ladybird beetle Coccinella septempunctata. Ecotoxicology 25(10):1782–1793

    CAS  PubMed  Google Scholar 

  • Xu L, Zhao C, Zhang YN, Gu ZY (2016) Lethal and sublethal effects of sulfoxaflor on the small brown planthopper Laodelphax striatellus. J Asia Pac Entomol 19(3):683–689

    Google Scholar 

  • Yu C, Lin R, Fu M, Zhou Y, Zong F, Jiang H, Lv N, Piao X, Zhang J, Liu Y, Brock TC (2014) Impact of imidacloprid on life-cycle development of Coccinella septempunctata in laboratory microcosms. Ecotoxicol Environ Saf 110:168–173

    CAS  PubMed  Google Scholar 

  • Zeng XY, He YQ, Wu JX, Tang YM, Gu J, Ding W, Zhang Y (2016) Sublethal effects of cyantraniliprole and imidacloprid on feeding behavior and life table parameters of Myzus persicae (Hemiptera: Aphididae). J Econ Entomol 109:1595–1602

    CAS  PubMed  Google Scholar 

  • Zhu Y, Loso MR, Watson GB, Sparks TC, Rogers RB, Huang JX, Gerwick BC, Babcock JM, Kelley D, Hegde VB, Nugent BM, Renga JM, Denholm I, Gorman K, DeBoer GJ, Hasler J, Meade T, Thomas JD (2011) Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J Agric Food Chem 59(7):2950–2957

    CAS  PubMed  Google Scholar 

Download references

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

BA, MR and AMS designed the experiment. BA, MR and AJ conducted the experiment, collected and analyzed the data and wrote manuscript. MDG and MAF helped in apprehending the idea of this research, designing the layout of experiment and improving the write-up, format and language of this manuscript. BA and AJ contributed in data setting for analysis, reviewed the final manuscript and made the format of this manuscript according to the format of this journal. This final manuscript was ultimately perused, scrutinized and approved for final submission by all the authors.

Corresponding author

Correspondence to Bilal Atta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The authors agree to all the concerned regulations.

Consent for publication

The authors agree to publish this scientific paper in the International Journal of Tropical Insect Science.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atta, B., Rizwan, M., Sabir, A.M. et al. Lethal and sublethal effects of clothianidin, imidacloprid and sulfoxaflor on the wheat aphid, Schizaphis graminum (Hemiptera: Aphididae) and its coccinellid predator, Coccinella septempunctata. Int J Trop Insect Sci 41, 345–358 (2021). https://doi.org/10.1007/s42690-020-00212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00212-w

Keywords

Navigation