Skip to main content
Log in

Anisotropy of a discrete fiber icosahedron model for fibrous tissues exhibited for large deformations

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

Early work on modeling the mechanical response of fibrous tissues suggested a structural model based on integration of angular distributions of fiber bundles over the surface of a unit sphere. This paper considers a discrete fiber model, based on a regular icosahedron with six fiber bundles defined by the twelve uniformly distributed vertices on a unit sphere. Like the structural model, the icosahedron model introduces a weighted sum of the strain energies of the six fiber bundles with parameters that characterize the density and strength of each fiber bundle as well as the undulation of the fibers in the bundle. It is shown that even when all fiber directions are identical and weighted evenly, this discrete model exhibits anisotropic response for large deformations. The reason for this anisotropic response is that the uncoupled strain energies of the fiber bundles do not allow for coupling of the strains in the fiber directions that are needed to form the principal invariants of strain. Anisotropic strain invariants based on structural tensors defined by a regular icosahedron model are discussed that can characterize isotropy and material anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bažant, P., Oh, B.H.: Efficient numerical integration on the surface of a sphere. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 66(1), 37–49 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bažant, Z.: Microplane model for strain controlled inelastic behaviour. In: Desai, C., Gallagher, R.H. (eds.) Mechanics of Engineering Materials, Ch. 3, pp. 45–59. Wiley (1984)

  3. Chuong, C.J., Fung, Y.C.: Residual stress in arteries. In: Frontiers in Biomechanics, pp. 117–139. Springer (1986)

  4. Ciambella, J., Nardinocchi, P.: A structurally frame-indifferent model for anisotropic visco-hyperelastic materials. J. Mech. Phys. Solids 147, 104247 (2021)

    Article  MathSciNet  Google Scholar 

  5. Ehret, A.E., Itskov, M., Schmid, H.: Numerical integration on the sphere and its effect on the material symmetry of constitutive equations—a comparative study. Int. J. Numer. Methods Eng. 81(2), 189–206 (2010)

    Article  MATH  Google Scholar 

  6. Ehret, A.E., Itskov, M., Weinhold, G.: A viscoelastic anisotropic model for soft collageneous tissues based on distributed fiber–matrix units. In: IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, pp. 55–65. Springer (2010)

  7. Ehret, A.E., Itskov, M., Weinhold, G.W.: A micromechanically motivated model for the viscoelastic behaviour of soft biological tissues at large strains. Il Nuovo Cimento C-Geophys. Space Phys. 32(1), 73–80 (2009)

    Google Scholar 

  8. Elata, D., Rubin, M.B.: Isotropy of strain energy functions which depend only on a finite number of directional strain measures. ASME J. Appl. Mech. 61, 284–289 (1994)

    Article  MATH  Google Scholar 

  9. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57(829–838) (1961)

  10. Flynn, C., Rubin, M.B.: An anisotropic discrete fibre model based on a generalised strain invariant with application to soft biological tissues. Int. J. Eng. Sci. 60, 66–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flynn, C., Rubin, M.B.: An anisotropic discrete fiber model with dissipation for soft biological tissues. Mech. Mater. 68, 217–227 (2014)

    Article  Google Scholar 

  12. Flynn, C., Rubin, M.B., Nielsen, P.: A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles. Int. J. Numer. Methods Biomed. Eng. 27(11), 1793–1811 (2011)

    Article  MATH  Google Scholar 

  13. Fung, Y.-C., et al.: Mechanical Properties of Living Tissues. vol. 547. Springer (1993)

  14. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. Solids 61(1), 1–48 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Holzapfel, G.A., Niestrawska, J.A., Ogden, R.W., Reinisch, A.J., Schriefl, A.J.: Modelling non-symmetric collagen fibre dispersion in arterial walls. Journal of the Royal Society Interface 12(106), 20150188 (2015)

    Article  Google Scholar 

  16. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of arteries. Proc. R. Soc. A: Math. Phys. Eng. Sci. 466(2118), 1551–1597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holzapfel, G.A., Ogden, R.W., Sherifova, S.: On fibre dispersion modelling of soft biological tissues: a review. Proc. R. Soc. A 475(2224), 20180736 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Itskov, M.: On the accuracy of numerical integration over the unit sphere applied to full network models. Comput. Mech. 57(5), 859–865 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Itskov, M., Ehret, A.E.: A universal model for the elastic, inelastic and active behaviour of soft biological tissues. GAMM-Mitteilungen 32(2), 221–236 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Itskov, M., Ehret, A.E., Dargazany, R.: A full-network rubber elasticity model based on analytical integration. Math. Mech. Solids 15(6), 655–671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lanir, Y.: Rheological behavior of the skin-experimental results and a structural model. In: Biorheology, vol. 15, pp. 454–454 (1978)

  22. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 16(1), 1–12 (1983)

    Article  Google Scholar 

  23. Lanir, Y., Fung, Y.C.: Two-dimensional mechanical properties of rabbit skin–I. Experimental system. J. Biomech. 7(1), 29–34 (1974)

    Article  Google Scholar 

  24. Lanir, Y., Fung, Y.C.: Two-dimensional mechanical properties of rabbit skin–II. Experimental results. J. Biomech. 7(2), 171–182 (1974)

    Article  Google Scholar 

  25. Limbert, G.: Mathematical and computational modelling of skin biophysics: a review. Proc. R. Soc. A: Math. Phys. Eng. Sci. 473(2203), 20170257 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miehe, C., Göktepe, S., Lulei, F.: A micro-macro approach to rubber-like materials—part i: the non-affine micro-sphere model of rubber elasticity. J. Mech. Phys. Solids 52(11), 2617–2660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Raz, E., Lanir, Y.: Recruitment viscoelasticity of the tendon. J. Biomech. Eng. 131(11), 111008 (2009)

    Article  Google Scholar 

  28. Rubin, M.B., Ehret, A.E.: Invariants for rari-and multi-constant theories with generalization to anisotropy in biological tissues. J. Elast. 133(1), 119–127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Verron, E.: Questioning numerical integration methods for microsphere (and microplane) constitutive equations. Mech. Mater. 89, 216–228 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge comments of Y Lanir which were used to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rubin.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.: Geometry of the discrete icosahedron fiber model

Appendix.: Geometry of the discrete icosahedron fiber model

1.1 A.1 Geometry of a regular icosahedron

The six unit vectors NI parallel to the directions of opposing vertices of a regular icosahedron are defined by the

$$ \begin{array}{@{}rcl@{}} \mathbf{N}_{1} &=& \mathbf{e}_{1}, \quad \mathbf{N}_{2} = \frac{1}{\sqrt{5}} \mathbf{e}_{1} + \frac{2}{\sqrt{5}} \mathbf{e}_{2}, \\ \mathbf{N}_{3} &=& \frac{1}{\sqrt{5}} \mathbf{e}_{1} + \frac{1}{2} \left( 1 - \frac{1}{\sqrt{5}} \right) \mathbf{e}_{2} + \sqrt{\frac{1}{2} \left( 1 + \frac{1}{\sqrt{5}} \right)} \mathbf{e}_{3}, \\ \mathbf{N}_{4} &=& \frac{1}{\sqrt{5}} \mathbf{e}_{1} - \frac{1}{2} \left( 1 + \frac{1}{\sqrt{5}} \right) \mathbf{e}_{2} + \sqrt{\frac{1}{2} \left( 1 - \frac{1}{\sqrt{5}} \right)} \mathbf{e}_{3}, \\ \mathbf{N}_{5} &=& \frac{1}{\sqrt{5}} \mathbf{e}_{1} - \frac{1}{2} \left( 1 + \frac{1}{\sqrt{5}} \right) \mathbf{e}_{2} - \sqrt{\frac{1}{2} \left( 1 - \frac{1}{\sqrt{5}} \right)} \mathbf{e}_{3}, \\ \mathbf{N}_{6} &=& \frac{1}{\sqrt{5}} \mathbf{e}_{1} + \frac{1}{2} \left( 1 - \frac{1}{\sqrt{5}} \right) \mathbf{e}_{2} - \sqrt{\frac{1}{2} \left( 1 + \frac{1}{\sqrt{5}} \right)} \mathbf{e}_{3}. \end{array} $$
(A.1)

Also, the symmetric matrix βIJ in (6) is given by

$$ \beta^{IJ} = \frac{1}{8} \left( \begin{array}{rrrrrr} 9 & -1 & -1 & -1 & -1 & -1 \\ -1 & 9 & -1 & -1 & -1 & -1 \\ -1 & -1 & 9 & -1 & -1 & -1 \\ -1 & -1 & -1 & 9 & -1 & -1 \\ -1 & -1 & -1 & -1 & 9 & -1 \\ -1 & -1 & -1 & -1 &-1 & 9 \end{array}\right). $$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, M.B. Anisotropy of a discrete fiber icosahedron model for fibrous tissues exhibited for large deformations. Mech Soft Mater 4, 2 (2022). https://doi.org/10.1007/s42558-022-00040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-022-00040-7

Keywords

Navigation