Skip to main content

Advertisement

Log in

The Negative Binomial Beta Prime Regression Model with Cure Rate: Application with a Melanoma Dataset

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

This paper introduces a cure rate survival model by assuming that the time to the event of interest follows a beta prime (BP) distribution and that the number of competing causes of the event of interest follows a negative binomial distribution. The proposed model provides a novel alternative to the existing cure rate regression models due to its flexibility, as the BP model can exhibit greater levels of skewness and kurtosis than these of the gamma and inverse Gaussian distributions. Moreover, the hazard rate function of this model can have an upside-down bathtub or an increasing shape. We approach both parameter estimation and local influence based on likelihood methods. In special, three perturbation schemes are considered for local influence. Numerical evaluation of the proposed model is performed by Monte Carlo simulations. In order to illustrate the potential for practice of our model, we apply it to the real medical dataset from a population-based study of incident cases of melanoma diagnosed in the state of São Paulo, Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andrade CTD, Magedanz AMPCB, Escobosa DM, Tomaz WM, Santinho CS, Lopes TO, Lombardo V (2012) The importance of a database in the management of healthcare services. Einstein (São Paulo) 10:360–365

    Article  Google Scholar 

  2. Azevedo C, Leiva V, Athayde E, Balakrishnan N (2012) Shape and change point analyses of the Birnbaum–Saunders-t hazard rate and associated estimation. Comput Stat Data Anal 56:3887–3897

    Article  MathSciNet  MATH  Google Scholar 

  3. Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A Jr, Kirkwood JM et al (2001) Final version of the American joint committee on cancer staging system for Cutaneous melanoma. J Clin Oncol 19:3635–3648

    Article  Google Scholar 

  4. Balch CM, Gershenwald JE, Soong JF, Thompson MB, Atkins DR, Byrd AC, Buzaid AJ, Cochran DG, Ding CS Final version of et al (2009) AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206

    Article  Google Scholar 

  5. Balch CM, Thompson JF, Gershenwald JE, Sj Soong, Ding S, McMasters KM, Coit DG, Eggermont AM, Gimotty PA, Johnson TM et al (2014) Age as a predictor of sentinel node metastasis among patients with localized melanoma: an inverse correlation of melanoma mortality and incidence of sentinel node metastasis among young and old patients. Ann Surg Oncol 21:1075–1081

    Article  Google Scholar 

  6. Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47:501–515

    Article  Google Scholar 

  7. Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc B 11:15–53

    MATH  Google Scholar 

  8. Borges P, Rodrigues J, Louzada F, Balakrishnan N (2016) A cure rate survival model under a hybrid latent activation scheme. Stat Methods Med Res 25:838–856

    Article  MathSciNet  Google Scholar 

  9. Bourguignon M, Santos-Neto M, de Castro M (2021) A new regression model for positive random variables with skewed and long tail. Metron 79:33–55

  10. Brent RP (1973) Algorithms for minimization without derivatives. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  11. Calsavara VF, Tomazella VLD, Fogo JC (2013) The effect of frailty term in the standard mixture model. Chilean J Stat 4:95–109

    MathSciNet  MATH  Google Scholar 

  12. Calsavara VF, Milani EA, Bertolli E, Tomazella V (2020) Long-term frailty modeling using a non-proportional hazards model: application with a melanoma dataset. Stat Methods Med Res 29(8):2100–2118

  13. Calsavara VF, Rodrigues AS, Tomazella VLD, de Castro M (2017) Frailty models power variance function with cure fraction and latent risk factors negative binomial. Commun Stat Theory Methods 46:9763–9776

    Article  MathSciNet  MATH  Google Scholar 

  14. Cancho VG, Louzada F, Barriga GD (2012) The geometric Birnbaum–Saunders regression model with cure rate. J Stat Plann Inference 142:993–1000

    Article  MathSciNet  MATH  Google Scholar 

  15. Cancho VG, Rodrigues J, de Castro M (2011) A flexible model for survival data with a cure rate: a Bayesian approach. J Appl Stat 38:57–70

    Article  MathSciNet  MATH  Google Scholar 

  16. Castro Md, Cancho VG, Rodrigues J (2009) A Bayesian long-term survival model parametrized in the cured fraction. Biometrical J J Math Methods Biosci 51:443–455

    MathSciNet  MATH  Google Scholar 

  17. Chen MH, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94:909–919

    Article  MathSciNet  MATH  Google Scholar 

  18. Cook RD (1987) Influence assessment. J Appl Stat 14:117–131

    Article  Google Scholar 

  19. Cooner F, Banerjee S, Carlin BP, Sinha D (2007) Flexible cure rate modeling under latent activation schemes. J Am Stat Assoc 102:560–572

    Article  MathSciNet  MATH  Google Scholar 

  20. Coordenação de Prevenção e Vigilância (2017) Instituto Nacional de Cancer José Alencar Gomes da Silva. Estimativa 2018: Incidência de Cancer no Brasil. Coordenação de Prevenção e Vigilância - Rio de Janeiro. http://www1.inca.gov.br/estimativa/2018/

  21. Cox DR (1972) Regression models and life-tables. J R Stat Soc B 34:187–220

    MathSciNet  MATH  Google Scholar 

  22. De Castro M, Cancho VG, Rodrigues J (2010) A hands-on approach for fitting long-term survival models under the gamlss framework. Comput Methods Programs Biomed 97:168–177

    Article  Google Scholar 

  23. Diniz Marinho PR, Bourguignon M, Barros Dias CR (2016) AdequacyModel: adequacy of probabilistic models and general purpose optimization. https://CRAN.R-project.org/package=AdequacyModel, R package version 2.0.0

  24. Ervik M, Lam F, Ferlay J, Mery L, Soerjomataram I, Bray F et al (2016) Cancer today lyon, france: international agency for research on cancer. 2016, Cancer Today. http://gco.iarc.fr/today. Accessed 01 Feb 2019

  25. Ewell M, Ibrahim JG (1997) The large sample distribution of the weighted log rank statistic under general local alternatives. Lifetime Data Anal 3:5–12

    Article  MATH  Google Scholar 

  26. Farewell VT (1982) The use of mixture models for the analysis of survival data with long-term survivors. Biometrics 38:1041–1046

    Article  Google Scholar 

  27. Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, Lazar AJ, Faries MB, Kirkwood JM, McArthur GA et al. (2017) Melanoma staging evidence-based changes in the American joint committee on cancer eighth edition cancer staging manual. CA A Cancer J Clin 67: 472–492

  28. Gu Y, Sinha D, Banerjee S (2011) Analysis of cure rate survival data under proportional odds model. Lifetime Data Anal 17:123–134

    Article  MathSciNet  MATH  Google Scholar 

  29. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 1, 2. Wiley, New York

    MATH  Google Scholar 

  30. Lambert D, Roeder K (1995) Overdispersion diagnostics for generalized linear models. J Am Stat Assoc 90:1225–1236

    Article  MathSciNet  MATH  Google Scholar 

  31. Leão J, Leiva V, Saulo H, Tomazella V (2018) Incorporation of frailties into a cure rate regression model and its diagnostics and application to melanoma data. Stat Med 37:4421–4440

    Article  MathSciNet  Google Scholar 

  32. Maller R, Zhou X (1996) Survival analysis with long-term survivors. Wiley, Chichester

    MATH  Google Scholar 

  33. McDonald JB (1984) Some generalized functions for the size distribution of income. Econometrica 52:647–663

    Article  MATH  Google Scholar 

  34. McDonald JB (1987) Model selection: some generalized distributions. Commun Stat Theory Methods 16:1049–1074

    Article  MathSciNet  MATH  Google Scholar 

  35. McDonald JB, Butler RJ (1990) Regression models for positive random variables. J Econom 43:227–251

    Article  MathSciNet  MATH  Google Scholar 

  36. R Core Team (2021) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  37. Rodrigues J, Cancho VG, de Castro M, Louzada-Neto F (2009) On the unification of long-term survival models. Stat Prob Lett 79:753–759

    Article  MathSciNet  MATH  Google Scholar 

  38. Sabel MS, Griffith K, Sondak VK, Lowe L, Schwartz JL, Cimmino VM, Chang AE, Rees RS, Bradford CR, Johnson TM (2005) Predictors of nonsentinel lymph node positivity in patients with a positive sentinel node for melanoma. J Am Coll Surg 201:37–47

    Article  Google Scholar 

  39. Stangl DK, Greenhouse JB (1998) Assessing placebo response using Bayesian hierarchical survival models. Lifetime Data Anal 4:5–28

    Article  MATH  Google Scholar 

  40. Tournoud M, Ecochard R (2007) Application of the promotion time cure model with time-changing exposure to the study of hiv/aids and other infectious diseases. Stat Med 26:1008–1021

    Article  MathSciNet  Google Scholar 

  41. Tsodikov A, Ibrahim J, Yakovlev A (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98:1063–1078

    Article  MathSciNet  Google Scholar 

  42. Yakovlev AY, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications. World Scientific, New Jersey

    Book  MATH  Google Scholar 

  43. Yin G, Ibrahim JG (2005) Cure rate models: a unified approach. Canad J Stat 33:559–570

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was partially supported by CNPq and CAPES grants from the Brazilian federal government, by FAPEAM grants from the government of the State of Amazonas, Brazil. The authors thank the Fundação Oncocentro de São Paulo for providing the Melanoma dataset. The data that support the findings of this study are openly available in http://www.fosp.saude.sp.gov.br/publicacoes/downloadarquivos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Bourguignon.

Ethics declarations

Conflict of Interest

The authors declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leão, J., Bourguignon, M., Saulo, H. et al. The Negative Binomial Beta Prime Regression Model with Cure Rate: Application with a Melanoma Dataset. J Stat Theory Pract 15, 63 (2021). https://doi.org/10.1007/s42519-021-00195-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-021-00195-y

Keywords

Navigation