Skip to main content
Log in

 Optimality of Ratio-Type Imputation Methods for Estimation of Population Mean Using Higher Order Moment of an Auxiliary Variable

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

This paper introduces some improved ratio methods of imputation using higher-order moment of an auxiliary variable while imputing missing values. It is well-known fact that the optimal ratio estimators attain the MSE of regression estimator, but while using Searls-type transformation this may not always happen. The performance of the proposed imputation methods is investigated relative to the methods proposed by Bhushan et al. (Commun Stat Simul Comput, 2018. https://doi.org/10.1080/03610918.2018.1500595), Mohamed et al. (Commun Stat Simul Comput, 2017. https://doi.org/10.1080/03610918.2016.1208235) and Bhushan and Pandey (J Stat Manag Syst 19(6):755–769, 2016, Commun Stat Theory Methods 47(11):2576–2589, 2018). A comparative study has been carried out, and it has been shown that the proposed methods perform better in comparison with methods proposed by Bhushan et al. (2018), Mohamed et al. (2017) and Bhushan and Pandey (2016, 2018). The theoretical findings are supported by numerical study on two real populations and a simulation study using hypothetical population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ahmed MS, Al-Titi O, Al-Rawi Z, Abu-Dayyeh W (2006) Estimation of a population mean using different imputation methods. Stat Transit 7(6):1247–1264

    Google Scholar 

  2. Bhushan S, Pandey AP (2016) Optimal imputation of missing data for estimation of population mean. J Stat Manag Syst 19(6):755–769

    Google Scholar 

  3. Bhushan S, Pandey AP (2018) Optimality of ratio type estimation methods for population mean in presence missing data. Commun Stat Theory Methods 47(11):2576–2589

    Article  MathSciNet  Google Scholar 

  4. Bhushan S, Pandey AP, Pandey A (2018) On optimality of imputation methods for estimation of population mean using higher order moment of an auxiliary variable. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2018.1500595

    Article  Google Scholar 

  5. Bhushan S, Pandey AP (2020) Optimal imputation of missing data using multi auxiliary information. Comput Stat. https://doi.org/10.1007/s00180-020-01016-9

    Article  MATH  Google Scholar 

  6. Bouza CN (2008) Estimation of the population mean with missing observations using product type estimators. Rev Investig Oper 29(3):207–223

    MathSciNet  MATH  Google Scholar 

  7. Diana G, Perri PF (2010) Improved estimators of the population mean for missing data. Commun Stat Theory Methods 39:3245–3251

    Article  MathSciNet  Google Scholar 

  8. Herrera BCN, Al-Omari AI (2011) Ranked set estimation with imputation of the missing observations: the median estimator. Rev Investig Oper 32(1):30–37

    MathSciNet  MATH  Google Scholar 

  9. Heitjan DF, Basu S (1996) Distinguishing ‘missing at random’ and ‘missing completely at random’. Am Stat 50:207–213

    MathSciNet  Google Scholar 

  10. Heitjan DF, Little RJA (1991) Multiple imputations for the fatal accident reporting system. J R Stat Soc C 40(1):13–29

    MATH  Google Scholar 

  11. Kalton G, Kasprzyk D, Santos R (1981) Issues of nonresponse and imputation in the survey of income and program participation. In: Krewski D, Platek R, Rao JNK (eds) Current topics in survey sampling. Academic Press, New York, pp 455–480

    Chapter  Google Scholar 

  12. Kalton G, Kasprzyk D (1982) Imputing for missing survey responses. In: Proceedings of the section on survey research method. American Statistical Association, pp 22–31

  13. Khalid M, Singh GN (2020) Some imputation methods to deal with the issue of missing data problems due to random non-response in two-occasion successive sampling. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2020.1828920

    Article  Google Scholar 

  14. Little RJA, Rubin DB (1987) Statistical analysis with missing data. Willey, New York

    MATH  Google Scholar 

  15. Little RJA, Rubin DB (1989) Analysis of social science data with missing values. Sociol Methods Res 18:292–326

    Article  Google Scholar 

  16. Lee H, Rancourt E, Sarndal CE (1994) Experiments with variance estimation from survey data with imputed values. J Off Stat 10:231–243

    Google Scholar 

  17. Lee H, Rancourt E, Särndal CE (1995) Variance estimation in the presence of imputed data for the generalized estimation system. In: Proceedings of the American Statistical Association (social survey research methods section), pp 384–389

  18. Landerman LR, Land KC, Pieper CF (1997) An empirical evaluation of the predictive mean matching method for imputing missing values. Sociol Methods Res 26:3–33

    Article  Google Scholar 

  19. Murthy MN (1977) Sampling: theory and methods. Statistical Publishing Society, Calcutta

    Google Scholar 

  20. Mohamed C, Sedory SA, Singh S (2017) Imputation using higher order moments of an auxiliary variable. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2016.1208235

    Article  MathSciNet  MATH  Google Scholar 

  21. Rubin RB (1976) Inference and missing data. Biometrika 63(3):581–592

    Article  MathSciNet  Google Scholar 

  22. Reddy VN (1978) A study on the use of prior knowledge on certain population parameters in estimation. Sankhya C 40:29–37

    MATH  Google Scholar 

  23. Rueda M, Gonzalez S (2004) Missing data and auxiliary information in surveys. Computat Stat 19:551–567

    Article  MathSciNet  Google Scholar 

  24. Rueda M, Gonzalez S, Arcos A (2005) Indirect methods of imputation of missing data based on available units. Appl Math Comput 164:249–261

    MathSciNet  MATH  Google Scholar 

  25. Searls DT (1964) The utilization of a known coefficient of variation in the estimation procedure. J Am Stat Assoc 59:1225–1226

    Article  Google Scholar 

  26. Singh S, Horn S (1998) An alternative estimator in multi-character surveys. Metrika 48:99–107

    MathSciNet  MATH  Google Scholar 

  27. Singh S, Horn S (2000) Compromised imputation in survey sampling. Metrika 51:267–276

    Article  MathSciNet  Google Scholar 

  28. Singh S, Deo B (2003) Imputation by power transformation. Stat Pap 44:555–579

    Article  MathSciNet  Google Scholar 

  29. Singh S (2003) Advanced sampling theory with applications: how Michael selected Amy, vol 12. Kluwer, Alphen aan den Rijn

    Book  Google Scholar 

  30. Singh S (2009) A new method of imputation in survey sampling, statistics. J Theor Appl Stat 43(5):499–511

    MATH  Google Scholar 

  31. Singh S, Valdes SR (2009) Optimal method of imputation in survey sampling. Appl Math Sci 3(35):1727–1737

    MathSciNet  MATH  Google Scholar 

  32. Singh GN, Khalid M, Kim JM (2019) Some imputation methods to deal with the problems of missing data in two-occasion successive sampling. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2018.1563153

    Article  Google Scholar 

  33. Toutenburg H, Srivastava VK (1998) Estimation of ratio of population means in survey sampling when some observations are missing. Metrika 48:177–187

    Article  MathSciNet  Google Scholar 

  34. Toutenburg H, Srivastava VK (2008) Amputation versus imputation of missing values through ratio method in sample surveys. Stat Pap 49:237–247

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the honorable reviewers and editor for their constructive and insightful comments which led to a significant improvement in the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Pratap Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

An outline of derivation of Theorem 1. The bias of \(T_{rat1}\)

$$\begin{aligned} T_{rat1}={\psi _{1}}{\bar{y}}_{r}\left( \dfrac{{\bar{X}}}{{\bar{x}}_{n}}\right) ^{\omega _{1}} \left( \dfrac{S_{x}^{2}}{s_{x\left( n\right) }^{2}}\right) ^{\omega _{2}} \end{aligned}$$

we can write it in the term of \(t_{rat1}\), is given by

$$\begin{aligned}&T_{rat1}=\psi _{1}t_{rat1}\\&(T_{rat1}-{\bar{Y}})=(\psi _{1}-1){\bar{Y}}+\psi _{1}(t_{rat1}-{\bar{Y}}) \end{aligned}$$

Taking expectation on both sides

$$\begin{aligned}&E(T_{rat1}-{\bar{Y}})=(\psi _{1}-1){\bar{Y}}+\psi _{1}E(t_{rat1}-{\bar{Y}})\\&Bias\left( T_{rat_{1}}\right) ={\bar{Y}}\left( \psi _{1}-1\right) +{\psi _{1}} Bias(t_{rat_{1}}) \end{aligned}$$

The MSE \(T_{rat1}\) is given by

$$\begin{aligned}&MSE\left( T_{rat1}\right) \\&\quad =\left( \psi _{1}-1\right) ^{2}{\bar{Y}}^{2}+\psi _{1}^{2}{\bar{Y}}^{2}\left[ f_{r}C_{y}^2+\omega _{1}f_{n}C_{x}^2+\omega _{2}f_{n}(\lambda _{04}-1)-2\omega _{1}f_{n}{\rho _{yx}}C_{y}C_{x}\right. \\&\qquad -\left. 2\omega _{2}f_{n}C_{y}{\lambda _{12}}+2\omega _{1}\omega _{2}f_{n}C_{x}{\lambda _{03}}\right] +2 \psi _{1}\left( \psi _{1}-1\right) {\bar{Y}}^{2}\left[ -\omega _{1}f_{n}{\rho _{yx}}C_{y}C_{x}-\omega _{2}f_{n}\right. \\&\qquad \left. C_{y}{\lambda _{12}}+\omega _{1}\omega _{2}f_{n}C_{x}{\lambda _{03}}+\frac{\omega _{1}(\omega _{1}+1)}{2}f_{n}C_{x}^2+\frac{\omega _{2}(\omega _{2}+1)}{2}f_{n}(\lambda _{04}-1)\right] \\&MSE\left( T_{rat1}\right) \\&\quad ={\bar{Y}}^{2}\left[ 1+\psi _{1}^2\left\{ 1+f_{r}C_{y}^2+2\omega _{1}^2f_{n}C_{x}^2+2\omega _{2}^2f_{n}(\lambda _{04}-1)-4\omega _{1}f_{n}{\rho _{yx}}C_{y}C_{x}-\right. \right. \\&\qquad \left. \left. 4\omega _{2}f_{n}C_{y}{\lambda _{12}}+4\omega _{1}\omega _{2}f_{n}C_{x}{\lambda _{03}}+\omega _{1}f_{n}C_{x}^2+\omega _{2}f_{n}(\lambda _{04}-1)\right\} -2\psi _{1}\left\{ 1+\right. \right. \\&\qquad \left. \left. \frac{\omega _{1}^2}{2}f_{n}C_{x}^2+\frac{\omega _{2}^2}{2}f_{n}(\lambda _{04}-1)+\frac{\omega _{1}}{2}f_{n}C_{x}^2+\frac{\omega _{2}}{2}f_{n}(\lambda _{04}-1)-\omega _{1}f_{n}{\rho _{yx}}C_{y}C_{x}-\right. \right. \\&\qquad \left. \left. \omega _{2}f_{n}C_{y}{\lambda _{12}}+\omega _{1}\omega _{2}f_{n}C_{x}{\lambda _{03}}\right\} \right] \end{aligned}$$

which can be expressed as

$$\begin{aligned} MSE\left( T_{rat1}\right) =\left[ 1+\psi _{1}^2A_{1}-2\psi _{1}B_{1}\right] \end{aligned}$$

For optimum value of \(\psi _{1}\) differentiating the \(MSE\left( T_{rat1}\right)\) with respect to \(\psi _{1}\) and equating to zero, we get

$$\begin{aligned} \psi _{1opt}=\dfrac{B_{1}}{A_{1}} \end{aligned}$$

substituting the optimum value of \(\psi _{1}\) in \(MSE\left( T_{rat1}\right)\), we get the minimum MSE

$$\begin{aligned} min.MSE\left( T_{rat1}\right) ={\bar{Y}}^2\left( 1-\frac{B_{1}^2}{A_{1}}\right) \end{aligned}$$

The derivations for other estimators \(T_{rat2}\) and \(T_{rat3}\) can be done on similar lines. In general, we have

$$\begin{aligned} MSE\left( T_{rati}\right) =\left[ 1+\psi _{i}^2A_{i}-2\psi _{i}B_{i}\right] \end{aligned}$$

The optimum values of scalars involved are tabulated below for ready reference:

$$\begin{aligned} \psi _{iopt}= & {} \dfrac{B_{i}}{A_{i}}; i=1,2,3.\\ A_{1}= & {} 1+f_{r}C_{y}^2+f_{n}\left\{ 2\omega _{1}^2C_{x}^2+2\omega _{2}^2(\lambda _{04}-1)-4\omega _{1}{\rho _{yx}}C_{y}C_{x}-4\omega _{2}C_{y}{\lambda _{12}}+\right. \\&\left. 4\omega _{1}\omega _{2}C_{x}{\lambda _{03}}+\omega _{1}C_{x}^2+\omega _{2}(\lambda _{04}-1)\right\} \\ B_{1}= & {} 1+f_{n}\left\{ \frac{\omega _{1}^2}{2}C_{x}^2+\frac{\omega _{2}^2}{2}(\lambda _{04}-1)+\frac{\omega _{1}}{2}C_{x}^2+\frac{\omega _{2}}{2}(\lambda _{04}-1)-\omega _{1}{\rho _{yx}}C_{y}C_{x}- \right. \\&\left. \omega _{2}C_{y}{\lambda _{12}}+\omega _{1}\omega _{2}C_{x}{\lambda _{03}}\right\} \\ A_{2}= & {} 1+f_{r}\left\{ C_{y}^2+2\omega _{3}^2C_{x}^2+2\omega _{4}^2(\lambda _{04}-1)-4\omega _{3}{\rho _{yx}}C_{y}C_{x}-4\omega _{4}C_{y}{\lambda _{12}}+\right. \\&\left. 4\omega _{3}\omega _{4}C_{x}{\lambda _{03}}+\omega _{3}C_{x}^2+\omega _{4}(\lambda _{04}-1)\right\} \\ B_{2}= & {} 1+f_{r}\left\{ \frac{\omega _{3}^2}{2}C_{x}^2+\frac{\omega _{4}^2}{2}(\lambda _{04}-1)+\frac{\omega _{3}}{2}C_{x}^2+\frac{\omega _{4}}{2}(\lambda _{04}-1)-\omega _{3}{\rho _{yx}}C_{y}C_{x}- \right. \\&\left. \omega _{4}C_{y}{\lambda _{12}}+\omega _{3}\omega _{4}C_{x}{\lambda _{03}}\right\} \\ A_{3}= & {} 1+f_{r}C_{y}^2+f_{rn}\left\{ 2\omega _{5}^2C_{x}^2+2\omega _{6}^2(\lambda _{04}-1)-4\omega _{5}{\rho _{yx}}C_{y}C_{x}-4\omega _{6}C_{y}{\lambda _{12}}+\right. \\&\left. 4\omega _{5}\omega _{6}C_{x}{\lambda _{03}}+\omega _{5}C_{x}^2+\omega _{6}(\lambda _{04}-1)\right\} \\ B_{6}= & {} 1+f_{rn}\left\{ \frac{\omega _{5}^2}{2}C_{x}^2+\frac{\omega _{6}^2}{2}(\lambda _{04}-1)+\frac{\omega _{5}}{2}C_{x}^2+\frac{\omega _{6}}{2}(\lambda _{04}-1)-\omega _{5}{\rho _{yx}}C_{y}C_{x}- \right. \\&\left. \omega _{6}C_{y}{\lambda _{12}}+\omega _{5}\omega _{6}C_{x}{\lambda _{03}}\right\} \end{aligned}$$

where \(\omega _{1}=\omega _{3}=\omega _{5}=\dfrac{C_y(\rho (\lambda _{04}-1)-\lambda _{12}\lambda _{03})}{C_x(\lambda _{04}-1-\lambda _{03}^2)}\) and \(\omega _{2}=\omega _{4}=\omega _{6}=\dfrac{C_y(\lambda _{12}-\rho _{yx}\lambda _{03})}{(\lambda _{04}-1-\lambda _{03}^2)}\) are used as optimizing value of the constant in this study, which are the optimum values of these scalars when \(\psi _{i}=1\) is set in the respective estimators.

Appendix 2

N\(<-\) 2000

X\(<-\) rep(0,N);

Y\(<-\) rep(0,N);

x1\(<-\)rgamma(N,0.085,1.2)

y1\(<-\)rgamma(N,0.109,2.0)

X\(<-\) 2.4+x1

SX\(<-\) sqrt(var(x1))

SY\(<-\) sqrt(var(y1))

rho\(<-\) 0.6

\(Y<- 2.8+(sqrt(1-rho^2)*y1)+(rho*(SY/SX)*x1)\)

set.seed(123456789)

\(N<- 2000\)

\(X<- rep(0,N);\)

\(Y<- rep(0,N);\)

\(x1<-rgamma(N,0.085,1.2)\)

\(y1<-rgamma(N,0.109,2.0)\)

\(X<- 2.4+x1\)

\(SX<- sqrt(var(x1))\)

\(SY<- sqrt(var(y1))\)

\(rho<- 0.6\)

\(Y<- 2.8+(sqrt(1-rho^2)*y1)+(rho*(SY/SX)*x1)\)

\(df = data.frame(X, Y)\)

\(X1<- df\)X

X2\(<-\) dfY

\(Sxy<-cov(X1,X2);Sxy\)

\(Vx<-var(X1);Vx\)

\(Vy<-var(X2);Vy\)

\(Sx<-sd(X1);Sx\)

\(Sy<-sd(X2);Sy\)

\(ro<-cor(X1, X2);ro\)

\(R<-(Ybr/Xbr);R\)

\(beta<-Sxy/Vx;beta\)

\(n<-200\)

\(r<-160\)

\(fn<-(1/n-1/N)\)

\(fr<-(1/r-1/N);\)

\(frn<-(1/r-1/n);\)

\(Ybr<-mean(X2);Ybr\)

\(Xbr<-mean(X1);Xbr\)

\(Cy<-Sy/Ybr;Cy\)

\(Cx<-Sx/Xbr;Cx\)

\(Beta<-(ro*(Cy/Cx));Beta\)

\(mu11<-sum((X2-Ybr)*(X1-Xbr))/(N-1)\)

\(mu12<-sum((X2-Ybr)*((X1-Xbr)^2))/(N-1)\)

\(mu02<-sum((X1-Xbr)^2)/(N-1)\)

\(mu20<-sum((X2-Ybr)^2)/(N-1)\)

\(mu03<-sum((X1-Xbr)^3)/(N-1)\)

\(mu04<-sum((X1-Xbr)^4)/(N-1)\)

\(lambda12<-((mu12)/((sqrt(mu20))*mu02));lambda12\)

\(lambda03<-((mu03)/((mu02)^(3/2)));lambda03\)

\(lambda04<-((mu04)/(mu02^2));lambda04\)

\(beta1<-((Sxy*(lambda04-1))-(Sy*Sx*lambda12*lambda03))/(Vx*(lambda04-1-(lambda03^2)));beta1\)

\(beta2<-((Sy*Sx*lambda12)-(Sxy*lambda03))/((Sx^3)*(lambda04-1-(lambda03^2)));beta2\)

Strategy1

\(A1<-1/(1+(fr*(Cy^2))-(fn*(ro^2)*(Cy^2)));\)

\(B1<-(ro*Sy)/(Sx*(1+(fr*(Cy^2))-(fn*(ro^2)*(Cy^2))));\)

\(C1=(1+(fr*Cy^2)+(2*(Beta^2)*fn*Cx^2)+((Beta*fn)*((Cx^2)-(4*ro*Cy*Cx))));\)

\(D1=(1+(((Beta^2)/2)*fn*Cx^2)+(((Beta/2)*fn)*((Cx^2)-(2*ro*Cy*Cx))));D1\)

\(alpha1=(D1/C1);\)

\(d1<-(Cy*((ro*(lambda04-1))-(lambda12*lambda03)))/(Cx*(lambda04-1-(lambda03^2)))\)

\(d2<-(Cy*(lambda12-(ro*lambda03)))/(lambda04-1-(lambda03^2));\)

\(K1<-(1+(2*(d1^2)*fn*Cx^2)+(2*(d2^2)*fn*(lambda04-1))+(d1*fn*((Cx^2)-(4*ro*Cy*Cx)))\)

\(+(d2*fn*((lambda04-1)-(4*Cy*lambda12)))+(4*d1*d2*fn*Cx*lambda03));K1 K2<-(1+(((d1^2)/2)*fn*Cx^2)+(((d2^2)/2)*fn*(lambda04-1))+((d1/2)*fn*((Cx^2)-(2*ro*Cy*Cx)))+((d2/2)*fn*((lambda04-1)-(2*Cy*lambda12)))+(d1*d2*fn*Cx*lambda03));K1\)

\(M1<-(fr*Vy);M1\)

\(M2<-((fr*Vy)+(fn*(((R^2)*Vx)-(2*R*Sxy))));M2\)

\(M3<-((fr*Vy)-(fn*Vy*(ro^2)));M3\)

\(M4<-((Ybr^2*M3)/((Ybr^2)+M3));M4\)

\(M5<-((fr*Vy)-((fn*Vy)*((ro^2)+(((lambda12-(ro*lambda03))^2)/(lambda04-1-(lambda03^2))))));M5\)

\(M6<-((Ybr^2*M5)/((Ybr^2)+M5));M6\)

\(M7<-((Ybr^2)*(1-((D1^2)/C1)));M7\)

\(M8<-((Ybr^2)*(1-((K1^2)/K1)));M8\)

\(P1<-100\)

\(P2<-(M1/M2)*100;P2\)

\(P3<-(M1/M3)*100;P3\)

\(P4<-(M1/M4)*100;P4\)

\(P5<-(M1/M5)*100;P5\)

\(P6<-(M1/M6)*100;P6\)

\(P7<-(M1/M7)*100;P7\)

\(P8<-(M1/M8)*100;P8\)

\(g1<-((Ybr^2)/((Ybr^2)+(fr*Vy)-((fn*Vy)*((ro^2)+(((lambda12-(ro*lambda03))^2)/(lambda04-1-(lambda03^2)))))));g1\)

\(g2<-(g1*Sy*((ro*(lambda04-1))-(lambda12*lambda03)))/(Sx*(lambda04-1-(lambda03^2)));g2\)

\(g3<-(g1*Sy*(lambda12-(ro*lambda03)))/(Vx*(lambda04-1-(lambda03^2)));g3\)

Strategy2

\(A2<-1/(1+(fr*(Cy^2))-(fr*(ro^2)*(Cy^2)));A2\)

\(B2<-(ro*Sy)/(Sx*(1+(fr*(Cy^2))-(fr*(ro^2)*(Cy^2))));B2\)

\(C2=(1+(fr*Cy^2)+(2*(Beta^2)*fr*Cx^2)+((Beta*fr)*((Cx^2)-(4*ro*Cy*Cx))));C2\)

\(D2=(1+(((Beta^2)/2)*fr*Cx^2)+(((Beta/2)*fr)*((Cx^2)-(2*ro*Cy*Cx))));D2\)

\(alpha2=(D2/C2);alpha2\)

\(M21<-(fr*Vy);M21\)

\(M22<-((fr*Vy)+(fr*(((R^2)*Vx)-(2*R*Sxy))));M22\)

\(M23<-((fr*Vy)-(fr*Vy*(ro^2)));M23\)

\(M24<-((Ybr^2*M23)/((Ybr^2)+M23));M24\)

\(M25<-((fr*Vy)-((fr*Vy)*((ro^2)+(((lambda12-(ro*lambda03))^2)/(lambda04-1-(lambda03^2))))));M25\)

\(M26<-((Ybr^2*M25)/((Ybr^2)+M25));M26\)

\(P21<-100\)

\(P22<-(M21/M22)*100;P22\)

\(P23<-(M21/M23)*100;P23\)

\(P24<-(M21/M24)*100;P24\)

\(P25<-(M21/M25)*100;P25\)

\(P26<-(M21/M26)*100;P26\)

\(g4<-((Ybr^2)/((Ybr^2)+(fr*Vy)-((fr*Vy)*((ro^2)+(((lambda12-(ro*lambda03))^2)/(lambda04-1-(lambda03^2)))))));g4\)

\(g5<-(g4*Sy*((ro*(lambda04-1))-(lambda12*lambda03)))/(Sx*(lambda04-1-(lambda03^2)));g5\)

\(g6<-(g4*Sy*(lambda12-(ro*lambda03)))/(Vx*(lambda04-1-(lambda03^2)));g6\)

Strategy3

\(A3<-1/(1+(fr*(Cy^2))-(frn*(ro^2)*(Cy^2)));A3\)

\(B3<-(ro*Sy)/(Sx*(1+(fr*(Cy^2))-(frn*(ro^2)*(Cy^2))));B3\)

\(C3=(1+(fr*Cy^2)+(2*(Beta^2)*frn*Cx^2)+((Beta*frn)*((Cx^2)-(4*ro*Cy*Cx))));C3\)

\(D3=(1+(((Beta^2)/2)*frn*Cx^2)+(((Beta/2)*frn)*((Cx^2)-(2*ro*Cy*Cx))));D3\)

\(alpha3=(D3/C3);alpha3\)

\(M31<-(fr*Vy);M31\)

\(M32<-((fn*Vy)+(frn*(Vy+((R^2)*Vx)-(2*R*Sxy))));M32\)

\(M33<-((fn*Vy)+(frn*Vy*(1-(ro^2))));M33\)

\(M34<-((Ybr^2*M33)/((Ybr^2)+M33));M34\)

\(M35<-((fn*Vy)+((frn*Vy)*(1-(ro^2)-(((lambda12-(ro*lambda03))^2)/(lambda04-1-(lambda03^2))))));M35\)

\(M36<-((Ybr^2*M35)/((Ybr^2)+M35));M36\)

\(P31<-100\)

\(P32<-(M31/M32)*100;P32\)

\(P33<-(M31/M33)*100;P33\)

\(P34<-(M31/M34)*100;P34\)

\(P35<-(M31/M35)*100;P35\)

\(P36<-(M31/M36)*100;P36\)

\(g7<-((Ybr^2)/((Ybr^2)+(fr*Vy)-((frn*Vy)*((ro^2)+(((lambda12-(ro*lambda03))^2)/(lambda04-1-(lambda03^2)))))));g7\)

\(g8<-(g7*Sy*((ro*(lambda04-1))-(lambda12*lambda03)))/(Sx*(lambda04-1-(lambda03^2)));g8\)

\(g9<-(g7*Sy*(lambda12-(ro*lambda03)))/(Vx*(lambda04-1-(lambda03^2)));g9\)

\(n<- 200\)

\(ll<- 200\)

\(r<- 160\)

\(S<-rep(0,n)\)

\(XX<- rep(0,r);\)

\(YY<- rep(0,r);\)

\(Xn<- rep(0,n);\)

\(Yn<- rep(0,n);\)

\(ZX<-rep(0,ll);\)

\(M11<- rep(0,ll);\)

\(M12<- rep(0,ll);\)

\(M13<- rep(0,ll);\)

\(M14<- rep(0,ll);\)

\(M15<- rep(0,ll);\)

\(M16<-rep(0,ll);\)

\(M17<-rep(0,ll);\)

\(M21<- rep(0,ll);\)

\(M22<- rep(0,ll);\)

\(M23<- rep(0,ll);\)

\(M24<- rep(0,ll);\)

\(M25<- rep(0,ll);\)

\(M26<-rep(0,ll);\)

\(M27<-rep(0,ll);\)

\(M31<- rep(0,ll);\)

\(M32<- rep(0,ll);\)

\(M33<- rep(0,ll);\)

\(M34<- rep(0,ll);\)

\(M35<- rep(0,ll);\)

\(M36<-rep(0,ll);\)

\(M37<-rep(0,ll);\)

\(ZXM<-rep(0,n);\)

\(ZYM<- rep(0,n);\)

\(xyr<-0\)

\(S<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S11<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S12<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S13<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S14<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S15<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S16<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S17<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S21<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S22<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S23<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S24<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S25<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S26<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S27<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S31<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S32<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S33<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S34<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S35<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S36<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(S37<-matrix(data=0, nrow=ll, ncol=n, byrow=\)T”)

\(ZY<-rep(0,ll);\)

\(W<- seq(1:N)\)

for (it in 1:n)

\(D<-sample(W, n, replace = FALSE, prob = NULL)\)

for (kk in 1:n)

Tn\(<-\) D[kk]

Xn[kk]\(<-\) X1[Tn]

Yn[kk]\(<-\) X2[Tn]

for (j in 1:ll)

T\(<-\)sample(D, r, replace = FALSE, prob = NULL)

for (k in 1:r)

T1\(<-\) T[k]

XX[k]\(<-\) X1[T1]

YY[k]\(<-\) X2[T1]

XX

YY

ZX[j]\(<-\)mean(XX);

ZY[j]\(<-\)mean(YY)

yr\(<-\)mean(YY);

\(M11[j]<-((yr-mean(X2))^2);\)

\(yrat1<-mean(YY)*mean(X1)/mean(Xn);\)

\(M12[j]<-((yrat1-mean(X2))^2);\)

\(yreg1<-mean(YY)+beta*(mean(X1)-mean(Xn));\)

\(M13[j]<-((yreg1-mean(X2))^2)\)

\(treg1<-(A1*mean(YY))+(B1*(mean(X1)-mean(Xn)));\)

\(M14[j]<-((treg1-mean(X2))^2);\)

\(ynew_ch1<-(mean(YY)+(beta1*(mean(X1)-mean(Xn)))+(beta2*(var(X1)-var(Xn))))\); \(M15[j]<-((ynew_ch1-mean(X2))^2);\)

\(T11<-((g1*mean(YY))+g2*(mean(X1)-mean(Xn))+g3*(var(X1)-var(Xn)));\)

\(M16[j]<-((T11-mean(X2))^2)\)

\(Tr1<-(alpha1*mean(YY)*((mean(X1)/mean(Xn))^Beta));\)

\(M17[j]<-((Tr1-mean(X2))^2);\)

\(yr<-mean(YY)\);

\(M21[j]<-((yr-mean(X2))^2);\)

\(yrat2<-mean(YY)*mean(X1)/mean(XX)\);

\(M22[j]<-((yrat2-mean(X2))^2);\)

\(yreg2<-mean(YY)+beta*(mean(X1)-mean(XX))\);

\(M23[j]<-((yreg2-mean(X2))^2);\)

\(treg2<-(A2*mean(YY))+(B2*(mean(X1)-mean(XX)))\);

\(M24[j]<-((treg2-mean(X2))^2);\)

\(ynew_ch2<-(mean(YY)+(beta1*(mean(X1)-mean(XX)))+(beta2*(var(X1)-var(XX))));\)

\(M25[j]<-((ynew_ch2-mean(X2))^2);\)

\(T21<-((g4*mean(YY))+g5*(mean(X1)-mean(XX))+g6*(var(X1)-var(XX)));\)

\(M26[j]<-((T21-mean(X2))^2)\)

\(Tr2<-(alpha2*mean(YY)*((mean(X1)/mean(XX))^Beta));\)

\(M27[j]<-((Tr2-mean(X2))^2);\)

\(yr<-mean(YY);\)

\(M31[j]<-((yr-mean(X2))^2)\);

\(yrat3<-mean(YY)*mean(Xn)/mean(XX)\);

\(M32[j]<-((yrat3-mean(X2))^2);\)

\(yreg3<-mean(YY)+beta*(mean(Xn)-mean(XX));\)

\(M33[j]<-((yreg3-mean(X2))^2);\)

\(treg3<-(A3*mean(YY))+(B3*(mean(Xn)-mean(XX)));\)

\(M34[j]<-((treg3-mean(X2))^2);\)

\(ynew_ch3<-(mean(YY)+(beta1*(mean(Xn)-mean(XX)))+(beta2*(var(Xn)-var(XX))))\); \(M35[j]<-((ynew_ch3-mean(X2))^2);\)

\(T31<-((g7*mean(YY))+g8*(mean(Xn)-mean(XX))+g9*(var(Xn)-var(XX)));\)

\(M36[j]<-((T31-mean(X2))^2)\)

\(Tr3<-(alpha3*mean(YY)*((mean(Xn)/mean(XX))^Beta));\)

\(M37[j]<-((Tr3-mean(X2))^2);\)

S[it,]\(<-\) ZX

S11[it,]\(<-\)M11

S12[it,]\(<-\)M12

S13[it,]\(<-\)M13

S14[it,]\(<-\)M14

S15[it,]\(<-\)M15

S16[it,]\(<-\)M16

S17[it,]\(<-\)M17

S21[it,]\(<-\)M21

S22[it,]\(<-\)M22

S23[it,]\(<-\)M23

S24[it,]\(<-\)M24

S25[it,]\(<-\)M25

S26[it,]\(<-\)M26

S27[it,]\(<-\)M27

S31[it,]\(<-\)M31

S32[it,]\(<-\)M32

S33[it,]\(<-\)M33

S34[it,]\(<-\)M34

S35[it,]\(<-\)M35

S36[it,]\(<-\)M36

S37[it,]\(<-\)M37

Strategy1

MSE1\(<-\)(sum(S11))/(n*ll);MSE1

MSE2\(<-\)(sum(S12))/(n*ll);MSE2

MSE3\(<-\)(sum(S13))/(n*ll);MSE3

MSE4\(<-\)(sum(S14))/(n*ll);MSE4

MSE5\(<-\)(sum(S15))/(n*ll);MSE5

MSE6\(<-\)(sum(S16))/(n*ll);MSE6

MSE7\(<-\)(sum(S17))/(n*ll);MSE7

PRE1\(<-\)100

PRE2\(<-\)(MSE1/MSE2)*100;PRE2

PRE3\(<-\)(MSE1/MSE3)*100;PRE3

PRE4\(<-\)(MSE1/MSE4)*100;PRE4

PRE5\(<-\)(MSE1/MSE5)*100;PRE5

PRE6\(<-\)(MSE1/MSE6)*100;PRE6

PRE7\(<-\)(MSE1/MSE7)*100;PRE7

Strategy2

MSE21\(<-\)(sum(S21))/(n*ll);MSE21

MSE22\(<-\)(sum(S22))/(n*ll);MSE22

MSE23\(<-\)(sum(S23))/(n*ll);MSE23

MSE24\(<-\)(sum(S24))/(n*ll);MSE24

MSE25\(<-\)(sum(S25))/(n*ll);MSE25

MSE26\(<-\)(sum(S26))/(n*ll);MSE26

MSE27\(<-\)(sum(S27))/(n*ll);MSE27

PRE21\(<-\)100

PRE22\(<-\)(MSE21/MSE22)*100;PRE22

PRE23\(<-\)(MSE21/MSE23)*100;PRE23

PRE24\(<-\)(MSE21/MSE24)*100;PRE24

PRE25\(<-\)(MSE21/MSE25)*100;PRE25

PRE26\(<-\)(MSE21/MSE26)*100;PRE26

PRE27\(<-\)(MSE21/MSE27)*100;PRE27

Strategy3

MSE31\(<-\)(sum(S31))/(n*ll);MSE31

MSE32\(<-\)(sum(S32))/(n*ll);MSE32

MSE33\(<-\)(sum(S33))/(n*ll);MSE33

MSE34\(<-\)(sum(S34))/(n*ll);MSE34

MSE35\(<-\)(sum(S35))/(n*ll);MSE35

MSE36\(<-\)(sum(S36))/(n*ll);MSE36

MSE37\(<-\)(sum(S37))/(n*ll);MSE37

PRE31\(<-\)100

PRE32\(<-\)(MSE31/MSE32)*100;PRE32

PRE33\(<-\)(MSE31/MSE33)*100;PRE33

PRE34\(<-\)(MSE31/MSE34)*100;PRE34

PRE35\(<-\)(MSE31/MSE35)*100;PRE35

PRE36\(<-\)(MSE31/MSE36)*100;PRE36

PRE37\(<-\)(MSE31/MSE37)*100;PRE37

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhushan, S., Pandey, A.P.  Optimality of Ratio-Type Imputation Methods for Estimation of Population Mean Using Higher Order Moment of an Auxiliary Variable. J Stat Theory Pract 15, 48 (2021). https://doi.org/10.1007/s42519-021-00187-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-021-00187-y

Keywords

Mathematics Subject Classification

Navigation