Skip to main content
Log in

A Brief Overview of Delamination Localization in Laminated Composites

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Inter-ply separation or delamination is a commonly occurring phenomenon in laminated composites that results in substantial loss of structural stiffness and strength without noticeable effects on the surface of the material. This article reviewed different approaches of delamination detection and localization ranging from physical based methods to the recent artificial intelligence-based algorithms. The relative advantages and disadvantages of different approaches are discussed so the readers could decide the appropriate method for their problems of interest. The article also discussed the possible research gaps to be bridged with new research efforts such as synthetic data augmentation, transfer learning, data imbalance, and others. The article will serve as quick yet comprehensive review of different approaches for the detection and localization of delamination in laminated composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Wang, B. Young, S.T. Smith, Mechanical Properties of Pultruded Carbon Fibre-Reinforced Polymer (CFRP) plates at elevated temperatures. Eng. Struct. 33, 2154–2161 (2011)

    Article  Google Scholar 

  2. Christensen R.M. 2012 Mechanics of Composite Materials; Courier Corporation

  3. R.R. Nagavally, Composite materials-history, types, fabrication techniques, advantages, and applications. Int. J. Mech. Prod. Eng 5, 82–87 (2017)

    Google Scholar 

  4. Chung, D.D. Composite Materials: Science and Applications; (Springer Science & Business Media, 2010)

  5. Nicolais, L.; Meo, M.; Milella, E. 2011 Composite Materials In: Luigi Nicolais, Michele Meo (eds) A Vision for the Future. Springer, London. https://doi.org/10.1007/978-0-85729-166-0.

  6. R. Talreja, Assessment of the fundamentals of failure theories for composite materials. Compos. Sci. Technol. 105, 190–201 (2014)

    Article  Google Scholar 

  7. N. Zimmermann, P.H. Wang, A review of failure modes and fracture analysis of aircraft composite materials. Eng. Fail. Anal. 115, 104692 (2020)

    Article  Google Scholar 

  8. M.J. Suriani, H.Z. Rapi, R.A. Ilyas, M. Petru, S.M. Sapuan, Delamination and manufacturing defects in natural fiber-reinforced hybrid composite: a review. Polymers 13, 1323 (2021)

    Article  Google Scholar 

  9. D. Geng, Y. Liu, Z. Shao, Z. Lu, J. Cai, X. Li, X. Jiang, D. Zhang, Delamination formation, evaluation and suppression during drilling of composite laminates: a Review. Compos. Struct. 216, 168–186 (2019)

    Article  Google Scholar 

  10. H.S. Kim, J. Kim, S.-B. Choi, A. Ghoshal, A. Chattopadhyay, Modal-strain-based damage index of laminated composite structures using smooth transition of displacements. AIAA J. 45, 2972–2978 (2007)

    Article  Google Scholar 

  11. C.N. Della, D. Shu, Vibration of delaminated composite laminates: a review. Appl. Mech. Rev. 60(1), 1–20 (2007)

    Article  Google Scholar 

  12. Jana, D. Delamination–A State-of-the-Art Review. In Proceedings of the Proceedings of the Twenty-ninth Conference on Cement Microscopy Quebec City, PQ, Canada; 2007; pp. 135–167.

  13. J. Babu, T. Sunny, N.A. Paul, K.P. Mohan, J. Philip, J.P. Davim, Assessment of delamination in composite materials: a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230, 1990–2003 (2016)

    Article  Google Scholar 

  14. A. Tabiei, W. Zhang, Composite laminate delamination simulation and experiment: a review of recent development. Appl. Mech. Rev. 70, 030801 (2018). https://doi.org/10.1115/1.4040448

    Article  Google Scholar 

  15. A. Khan, N. Kim, J.K. Shin, H.S. Kim, B.D. Youn, Damage assessment of smart composite structures via machine learning: a review. JMST Adv. 1, 107–124 (2019)

    Article  Google Scholar 

  16. M. He, Y. Wang, K. Ram Ramakrishnan, Z. Zhang, A Comparison of machine learning algorithms for assessment of delamination in fiber-reinforced polymer composite beams. Struct. Health Monit. 20, 1997–2012 (2021)

    Article  Google Scholar 

  17. A. Khan, H.S. Kim, Classification and prediction of multidamages in smart composite laminates using discriminant analysis. Mech. Adv. Mater. Struct. 29, 230–240 (2022). https://doi.org/10.1080/15376494.2020.1759164

    Article  Google Scholar 

  18. Z. Su, L. Ye, Y. Lu, Guided lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295, 753–780 (2006)

    Article  Google Scholar 

  19. S.S. Kessler, S.M. Spearing, C. Soutis, Damage detection in composite materials using lamb wave methods. Smart Mater. Struct. 11, 269 (2002)

    Article  Google Scholar 

  20. B. Huang, B.-H. Koh, H.S. Kim, PCA-based damage classification of delaminated smart composite structures using improved layerwise theory. Comput. Struct. 141, 26–35 (2014)

    Article  Google Scholar 

  21. A.R.M. Rao, K. Lakshmi, S.K. Kumar, Detection of delamination in laminated composites with limited measurements combining PCA and dynamic QPSO. Adv. Eng. Softw. 86, 85–106 (2015)

    Article  Google Scholar 

  22. A. Khan, J.K. Shin, W.C. Lim, N.Y. Kim, H.S. Kim, A deep learning framework for vibration-based assessment of delamination in smart composite laminates. Sensors 20, 2335 (2020)

    Article  Google Scholar 

  23. A. Khan, S. Khalid, I. Raouf, J.-W. Sohn, H.-S. Kim, Autonomous assessment of delamination using scarce raw structural vibration and transfer learning. Sensors 21, 6239 (2021)

    Article  Google Scholar 

  24. H.S. Kim, A. Chattopadhyay, A. Ghoshal, Dynamic analysis of composite laminates with multiple delamination using improved layerwise theory. AIAA J. 41, 1771–1779 (2003)

    Article  Google Scholar 

  25. H.S. Kim, A. Chattopadhyay, A. Ghoshal, Characterization of delamination effect on composite laminates using a new generalized layerwise approach. Comput. Struct. 81, 1555–1566 (2003)

    Article  Google Scholar 

  26. G.C. Pardoen, Effect of delamination on the natural frequencies of composite laminates. J. Compos. Mater. 23, 1200–1215 (1989)

    Article  Google Scholar 

  27. B. Huang, H.S. Kim, Frequency response analysis of a delaminated smart composite plate. J. Intell. Mater. Syst. Struct. 26, 1091–1102 (2015)

    Article  Google Scholar 

  28. M. Imran, R. Khan, S. Badshah, Experimental investigation of the influence of stacking sequence and delamination size on the natural frequencies of delaminated composite plate. Pak. J. Sci. Ind. Res. Series A Phy. Sci. 64, 76–83 (2021)

    Article  Google Scholar 

  29. Y. Zou, L. Tong, G.P. Steven, Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. J. Sound Vib. 230, 357–378 (2000)

    Article  Google Scholar 

  30. E.P. Carden, P. Fanning, Vibration based condition monitoring: a review. Struct. Health Monit. 3, 355–377 (2004)

    Article  Google Scholar 

  31. M.A. Perez, L. Gil, S. Oller, Impact damage identification in composite laminates using vibration testing. Compos. Struct. 108, 267–276 (2014)

    Article  Google Scholar 

  32. S.S. Kessler, S.M. Spearing, M.J. Atalla, C.E. Cesnik, C. Soutis, Damage detection in composite materials using frequency response methods. Compos. B Eng. 33, 87–95 (2002)

    Article  Google Scholar 

  33. A.C. Okafor, K. Chandrashekhara, Y.P. Jiang, Delamination prediction in composite beams with built-in piezoelectric devices using modal analysis and neural network. Smart Mater. Struct. 5, 338 (1996)

    Article  Google Scholar 

  34. P.M. Mujumdar, S.O. Suryanarayan, Flexural vibrations of beams with delaminations. J. Sound Vib. 125, 441–461 (1988)

    Article  MATH  Google Scholar 

  35. J.H. Yim, B.Z. Jang, Damping in partially delaminated composites. KSME Int. J. 11, 537–546 (1997)

    Article  Google Scholar 

  36. Keye, S.; Rose, M.; Sachau, D. Localizing Delamination Damages in Aircraft Panels from Modal Damping Parameters. In Proceedings of the Proceedings of the 19th International Modal Analysis Conference (IMAC XIX), Kissimmee, Florida, USA; 2001; pp. 412–417.

  37. C. Kyriazoglou, B.H. Le Page, F.J. Guild, Vibration damping for crack detection in composite laminates. Compos. A Appl. Sci. Manuf. 35, 945–953 (2004)

    Article  Google Scholar 

  38. N.A. Chrysochoidis, D.A. Saravanos, Assessing the effects of delamination on the damped dynamic response of composite beams with piezoelectric actuators and sensors. Smart Mater. Struct. 13, 733 (2004)

    Article  Google Scholar 

  39. R. Chandra, S.P. Singh, K. Gupta, Damping studies in fiber-reinforced composites–a Review. Compos. Struct. 46, 41–51 (1999)

    Article  Google Scholar 

  40. Nobari, A.S.; Aliabadi, M.F. Vibration-Based Techniques for Damage Detection and Localization in Engineering Structures; World Scientific, 2018; Vol. 10.

  41. D.A. Saravanos, D.A. Hopkins, Effects of delaminations on the damped dynamic characteristics of composite laminates: analysis and experiments. J. Sound Vib. 192, 977–993 (1996)

    Article  Google Scholar 

  42. T.H. Ooijevaar, L.L. Warnet, R. Loendersloot, R. Akkerman, T. Tinga, Impact damage identification in composite skin-stiffener structures based on modal curvatures. Struct. Control. Health Monit. 23, 198–217 (2016)

    Article  Google Scholar 

  43. A.P. Herman, A.C. Orifici, A.P. Mouritz, Vibration modal analysis of defects in composite T-stiffened panels. Compos. Struct. 104, 34–42 (2013)

    Article  Google Scholar 

  44. J. Ciambella, F. Vestroni, The use of modal curvatures for damage localization in beam-type structures. J. Sound Vib. 340, 126–137 (2015)

    Article  Google Scholar 

  45. W. Fan, P. Qiao, Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10, 83–111 (2011)

    Article  Google Scholar 

  46. P. Qiao, K. Lu, W. Lestari, J. Wang, Curvature mode shape-based damage detection in composite laminated plates. Compos. Struct. 80, 409–428 (2007)

    Article  Google Scholar 

  47. G. Sha, M. Cao, M. Radzieński, W. Ostachowicz, Delamination-induced relative natural frequency change curve and its use for delamination localization in laminated composite beams. Compos. Struct. 230, 111501 (2019)

    Article  Google Scholar 

  48. S.K. Barman, T.R. Jebieshia, P. Tiwari, D.K. Maiti, D. Maity, Two-stage inverse method to detect delamination in composite beam using vibration responses. AIAA J. 57, 1312–1322 (2019)

    Article  Google Scholar 

  49. M.S. Cao, G.G. Sha, Y.F. Gao, W. Ostachowicz, Structural damage identification using damping: a compendium of uses and features. Smart Mater. Struct. 26, 043001 (2017)

    Article  Google Scholar 

  50. A. Khan, H.S. Kim, Assessment of delaminated smart composite laminates via system identification and supervised learning. Compos. Struct. 206, 354–362 (2018)

    Article  Google Scholar 

  51. Y. Li, H. Liu, K. Zhou, H. Qin, W. Yu, Y. Liu, Machine learning approach for delamination detection with feature missing and noise polluted vibration characteristics. Compos. Struct. 287, 115335 (2022)

    Article  Google Scholar 

  52. A. Khan, D.-K. Ko, S.C. Lim, H.S. Kim, Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Compos. B Eng. 161, 586–594 (2019)

    Article  Google Scholar 

  53. S. Fotouhi, F. Pashmforoush, M. Bodaghi, M. Fotouhi, Autonomous damage recognition in visual inspection of laminated composite structures using deep learning. Compos. Struct. 268, 113960 (2021)

    Article  Google Scholar 

  54. A.A. Ijjeh, S. Ullah, P. Kudela, Full wavefield processing by using FCN for delamination detection. Mech. Syst. Signal Process. 153, 107537 (2021)

    Article  Google Scholar 

  55. H. Lee, H.J. Lim, T. Skinner, A. Chattopadhyay, A. Hall, Automated fatigue damage detection and classification technique for composite structures using lamb waves and deep autoencoder. Mech. Syst. Signal Process. 163, 108148 (2022)

    Article  Google Scholar 

  56. A. Khan, I. Raouf, Y.R. Noh, D. Lee, J.W. Sohn, H.S. Kim, Autonomous assessment of delamination in laminated composites using deep learning and data augmentation. Compos. Struct. 290, 115502 (2022). https://doi.org/10.1016/j.compstruct.2022.115502

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)(No. 2020R1A2C1006613) and was also supported by the Ministry of Trade, Industry, and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (Project No. P0016173).

Funding

National reseasrch foundation of korea, 2020R1A2C1006613, Heung Soo Kim, Korea Institute for Advancement of Technology, P0016173, Heung Soo Kim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XSLX 14 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Kim, H.S. A Brief Overview of Delamination Localization in Laminated Composites. Multiscale Sci. Eng. 4, 102–110 (2022). https://doi.org/10.1007/s42493-022-00085-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-022-00085-w

Keywords

Navigation