Skip to main content
Log in

Recent Studies on Stress Function-Based Approaches for the Free Edge Stress Analysis of Smart Composite Laminates: A Brief Review

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Recently, the usage of smart composite structures has grown dramatically in various real-life applications because of their excellent actuation and self-sensing capabilities. The presence of free edge stresses can ultimately cause delamination or debonding failure in smart composites. This review overviews the recent studies on the stress function-based (SFB) approaches developed for the free edge interlaminar stress analysis of smart composites. SFB approaches are widely popular because, in these approaches, the assumed stress functions can precisely fulfill traction-free and free edge boundary conditions. The free edge interlaminar stress distributions are calculated by assuming the appropriate stress functions. This review further summaries the different methods that have been proposed for the control and reduction of interlaminar stresses in smart composite structures to avoid the debonding in composite layer interfaces and the piezoelectric sensor debonding from the host composite laminate. The paper ends with the concluding comments and highlights the possible future outlooks in this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Asadi, T. Farsadi, Active flutter control of thin walled wing-engine system using piezoelectric actuators. Aerosp. Sci. Technol. 102, 105853 (2020). https://doi.org/10.1016/j.ast.2020.105853

    Article  Google Scholar 

  2. G. Flores, M. Rakotondrabe, Robust nonlinear control for a piezoelectric actuator in a robotic hand using only position measurements. IEEE Control Syst. Lett. 6, 872–877 (2022). https://doi.org/10.1109/LCSYS.2021.3087102

    Article  MathSciNet  Google Scholar 

  3. H. Kulkarni, K. Zohaib, A. Khusru, K. Shravan Aiyappa, Application of piezoelectric technology in automotive systems. Mater. Today: Proc. 5, 21299–21304 (2018). https://doi.org/10.1016/j.matpr.2018.06.532

    Article  Google Scholar 

  4. J.W. Sohn, H.S. Kim, S.B. Choi, Active vibration control of smart hull structures using piezoelectric actuators. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 220, 1329–1337 (2006). https://doi.org/10.1243/09544062C06105

    Article  Google Scholar 

  5. A. Khan, H.S. Lee, H.S. Kim, Analysis of sensor-debonding failure in active vibration control of smart composite plate. J. Intell. Mater. Syst. Struct. 28, 2603–2616 (2017). https://doi.org/10.1177/1045389X17692052

    Article  Google Scholar 

  6. S. Khalid, I. Raouf, A. Khan, N. Kim, H.S. Kim, A review of human-powered energy harvesting for smart electronics: recent progress and challenges. Int. J. Precis. Eng. Manuf. Green Tech. 6, 821–851 (2019)

    Article  Google Scholar 

  7. H.S. Kim, J.-H. Kim, J. Kim, A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12, 1129–1141 (2011). https://doi.org/10.1007/s12541-011-0151-3

    Article  Google Scholar 

  8. Kim, H.S.; Ghoshal, A.; Chattopadhyay, A.; Prosser, W.H. Development of Embedded Sensor Models in Composite Laminates for Structural Health Monitoring.; Baz, A.M., Ed.; San Diego, CA, August 5 2003; p. 99.

  9. A. Khan, H.S. Kim, Assessment of delaminated smart composite laminates via system identification and supervised learning. Compos. Struct. 206, 354–362 (2018). https://doi.org/10.1016/j.compstruct.2018.08.014

    Article  Google Scholar 

  10. A. Khan, H.S. Kim, B.D. Youn, Modeling and assessment of partially debonded piezoelectric sensor in smart composite laminates. Int. J. Mech. Sci. 131–132, 26–36 (2017). https://doi.org/10.1016/j.ijmecsci.2017.06.031

    Article  Google Scholar 

  11. Y.-M. Jeong, J.-S. Kim, Electric potential recovery in smart composite plates. Multiscale Sci. Eng. 2, 161–168 (2020). https://doi.org/10.1007/s42493-020-00047-0

    Article  Google Scholar 

  12. N.J. Pagano, R.B. Pipes, Some observations on the interlaminar strength of composite laminates. Int. J. Mech. Sci. 15, 679–688 (1973). https://doi.org/10.1016/0020-7403(73)90099-4

    Article  Google Scholar 

  13. W.-L. Yin, Free-edge effects in anisotropic laminates under extension, bending and twisting, part I: a stress-function-based variational approach. J. Appl. Mech. 61, 410–415 (1994). https://doi.org/10.1115/1.2901459

    Article  MATH  Google Scholar 

  14. M. Cho, J.-Y. Yoon, Free-edge interlaminar stress analysis of composite laminates by extended Kantorovich method. AIAA J. 37, 656–660 (1999). https://doi.org/10.2514/2.768

    Article  Google Scholar 

  15. W. Becker, Closed-form analysis of the free edge effect in angle-ply laminates. J. Appl. Mech. 61, 209–211 (1994). https://doi.org/10.1115/1.2901404

    Article  MATH  Google Scholar 

  16. M. Cho, S.Y. Rhee, Optimization of laminates with free edges under bounded uncertainty subject to extension, bending and twisting. Int. J. Solids Struct. 41, 227–245 (2004). https://doi.org/10.1016/j.ijsolstr.2003.09.011

    Article  MATH  Google Scholar 

  17. C. Mittelstedt, W. Becker, Free-edge effects in composite laminates. Appl. Mech. Rev. 60, 217–245 (2007). https://doi.org/10.1115/1.2777169

    Article  Google Scholar 

  18. B. Karp, D. Durban, Saint-Venant’s principle in dynamics of structures. Appl. Mech. Rev. 64, 020801 (2011). https://doi.org/10.1115/1.4004930

    Article  Google Scholar 

  19. T. Kant, K. Swaminathan, Estimation of transverse/interlaminar stresses in laminated composites – a selective review and survey of current developments. Compos. Struct. 49, 65–75 (2000). https://doi.org/10.1016/S0263-8223(99)00126-9

    Article  Google Scholar 

  20. R.L. Spilker, S.C. Chou, Edge effects in symmetric composite laminates: importance of satisfying the traction-free-edge condition. J. Compos. Mater. 14, 2–20 (1980)

    Google Scholar 

  21. J. Lee, M. Cho, H.S. Kim, Bending analysis of a laminated composite patch considering the free-edge effect using a stress-based equivalent single-layer composite model. Int. J. Mech. Sci. 53, 606–616 (2011). https://doi.org/10.1016/j.ijmecsci.2011.05.007

    Article  Google Scholar 

  22. H.S. Kim, J. Lee, M. Cho, Free-edge interlaminar stress analysis of composite laminates using interface modeling. J. Eng. Mech. 138, 973–983 (2012). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000399

    Article  Google Scholar 

  23. W.-L. Yin, Free-edge effects in anisotropic laminates under extension, bending, and twisting, part II: Eigenfunction analysis and the results for symmetric laminates. J. Appl. Mech. 61, 416–421 (1994). https://doi.org/10.1115/1.2901460

    Article  Google Scholar 

  24. A. Chattopadhyay, C.E. Seeley, A higher order theory for modeling composite laminates with induced strain actuators. Compos. B Eng. 28, 243–252 (1997). https://doi.org/10.1016/S1359-8368(96)00043-1

    Article  Google Scholar 

  25. J.N. Reddy, On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21, 568–593 (1999). https://doi.org/10.1016/S0141-0296(97)00212-5

    Article  Google Scholar 

  26. H.S. Kim, X. Zhou, A. Chattopadhyay, Interlaminar stress analysis of shell structures with piezoelectric patch including thermal loading. AIAA J. 40, 2517–2525 (2002). https://doi.org/10.2514/2.1596

    Article  Google Scholar 

  27. H.S. Kim, A. Chattopadhyay, C. Nam, Implementation of a coupled thermo-piezoelectric-mechanical model in the LQG controller design for smart composite shells. J. Intell. Mater. Syst. Struct. 13, 713–724 (2002). https://doi.org/10.1177/1045389X02013011003

    Article  Google Scholar 

  28. D.T. Detwiler, M.-H.H. Shen, V.B. Venkayya, Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors. Finite Elem. Anal. Des. 20, 87–100 (1995). https://doi.org/10.1016/0168-874X(95)00013-J

    Article  MATH  Google Scholar 

  29. J. Oh, M. Cho, J.-S. Kim, Buckling analysis of a composite shell with multiple delaminations based on a higher order zig-zag theory. Finite Elem. Anal. Des. 44, 675–685 (2008). https://doi.org/10.1016/j.finel.2008.03.007

    Article  Google Scholar 

  30. B. Huang, H.S. Kim, Reduction of free edge peeling stress of laminated composites using active piezoelectric layers. Sci. World J. 2014, 1–13 (2014). https://doi.org/10.1155/2014/439492

    Article  Google Scholar 

  31. B. Huang, H. Soo Kim, Control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators. Smart Mater. Struct. 23, 074002 (2014). https://doi.org/10.1088/0964-1726/23/7/074002

    Article  Google Scholar 

  32. G. Flanagan, An efficient stress function approximation for the free-edge stresses in laminates. Int. J. Solids Struct. 31, 941–952 (1994). https://doi.org/10.1016/0020-7683(94)90004-3

    Article  MATH  Google Scholar 

  33. H.S. Kim, M. Cho, J. Lee, A. Deheeger, M. Grédiac, J.-D. Mathias, Three dimensional stress analysis of a composite patch using stress functions. Int. J. Mech. Sci. 52, 1646–1659 (2010). https://doi.org/10.1016/j.ijmecsci.2010.08.006

    Article  Google Scholar 

  34. M. Cho, H.S. Kim, Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings. Int. J. Solids Struct. 37, 435–459 (2000). https://doi.org/10.1016/S0020-7683(99)00014-1

    Article  MATH  Google Scholar 

  35. H.S. Kim, S.Y. Rhee, M. Cho, Simple and efficient interlaminar stress analysis of composite laminates with internal ply-drop. Compos. Struct. 84, 73–86 (2008). https://doi.org/10.1016/j.compstruct.2007.06.004

    Article  Google Scholar 

  36. C. Kassapoglou, P.A. Lagace, An efficient method for the calculation of interlaminar stresses in composite materials. J. Appl. Mech. 53, 744–750 (1986). https://doi.org/10.1115/1.3171853

    Article  MATH  Google Scholar 

  37. H.S. Kim, M. Cho, G.-I. Kim, Free-edge strength analysis in composite laminates by the extended Kantorovich method. Compos. Struct. 49, 229–235 (2000). https://doi.org/10.1016/S0263-8223(99)00138-5

    Article  Google Scholar 

  38. B. Huang, H.S. Kim, J. Wang, J. Du, Interlaminar stress analysis of magneto-electro-elastic composite layered laminates using a stress function based iterative approach. Compos. B Eng. 90, 406–415 (2016). https://doi.org/10.1016/j.compositesb.2015.12.051

    Article  Google Scholar 

  39. B. Huang, H.S. Kim, Free-edge interlaminar stress analysis of piezo-bonded composite laminates under symmetric electric excitation. Int. J. Solids Struct. 51, 1246–1252 (2014). https://doi.org/10.1016/j.ijsolstr.2013.12.016

    Article  Google Scholar 

  40. B. Huang, H.S. Kim, Interlaminar stress analysis of piezo-bonded composite laminates using the extended Kantorovich method. Int. J. Mech. Sci. 90, 16–24 (2015). https://doi.org/10.1016/j.ijmecsci.2014.11.003

    Article  Google Scholar 

  41. S. Khalid, H.S. Kim, Series solution-based approach for the interlaminar stress analysis of smart composites under thermo-electro-mechanical loading. Mathematics (2022). https://doi.org/10.3390/math10020268

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)(No. 2020R1A2C1006613) and was also supported by the Ministry of Trade, Industry, and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (Project No. P0016173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, S., Kim, H.S. Recent Studies on Stress Function-Based Approaches for the Free Edge Stress Analysis of Smart Composite Laminates: A Brief Review. Multiscale Sci. Eng. 4, 73–78 (2022). https://doi.org/10.1007/s42493-022-00079-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-022-00079-8

Keywords

Navigation