Skip to main content
Log in

Gold-Copper Mining Investment Evaluation Through Multivariate Copula-Innovated Simulations

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Risk assessment of mining projects is a requirement in the mineral industries. In this process, many risk variables are time-dependent, and the only available data are historical time series. Moreover, in the case of a multivariate scenario, conventional forecasting methods fail to capture conditional dependency across the variables, which is important when there is an underlying causal relationship that needs to be modeled for accurate project evaluation. Thus, we investigated the use of copulas to capture the conditional distribution of the factors involved in a mine risk assessment study. We employed a multivariate copula-based time-series approach to model several uncertain variables. The Autoregressive Fractionally Integrated Moving Average - Generalized Autoregressive Conditional Heteroscedasticity (ARFIMA-GARCH) model was used for the conditional mean and copulas were used to model the error distribution, thus capturing the collective variation and dependence pattern across the variables. The method was implemented to model gold prices, copper prices, and the 10-year US Treasury bond yields and to determine the project’s net present value and probability of being economically feasible. The proposed approach can be used for cases where simulation of multivariate time-series is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basarir H, Kumral M, Karpuz C, Tutluoglu L (2010) Geostatistical modeling of spatial variability of SPT data for a borax stockpile site. Eng Geol 114(3-4):154–163. https://doi.org/10.1016/j.enggeo.2010.04.012

    Article  Google Scholar 

  2. Kumral M (2012) Production planning of mines: optimisation of block sequencing and destination. Int J Min Reclam Environ 26(20):93–103. https://doi.org/10.1080/17480930.2011.644474

    Article  Google Scholar 

  3. Kumral M (2011) Incorporating geo-metallurgical information into mine production scheduling. J Oper Res Soc 62(1):60–68. https://doi.org/10.1057/jors.2009.174

    Article  Google Scholar 

  4. Torikian H, Kumral M (2014) Analyzing reproduction of correlations in Monte Carlo simulations: application to mine project valuation. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 8(4):235–249. https://doi.org/10.1080/17499518.2014.966116

    Article  Google Scholar 

  5. Ardian A, Kumral M (2020) Enhancing mine risk assessment through more accurate reproduction of correlations and interactions between uncertain variables. Miner Econ. https://doi.org/10.1007/s13563-020-00238-z

  6. Ardian A, Kumral M (2020) Incorporating stochastic correlations into mining project evaluation using the Jacobi process. Resources Policy 65:101558. https://doi.org/10.1016/j.resourpol.2019.101558

    Article  Google Scholar 

  7. Sabanov S, Madani N, Mukhamedyarova Z, Tussupbekov Y (2020) A risk analysis method for estimation of financial benefits of the existing mine ventilation system. Mining, Metallurgy & Exploration 37(4):1137–1149. https://doi.org/10.1007/s42461-020-00232-7

    Article  Google Scholar 

  8. Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econ 31(3):307–327. https://doi.org/10.1016/0304-4076(86)90063-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Thupayagale P (2010) Evaluation of GARCH-based models in value-at-risk estimation: evidence from emerging equity markets. Invest Anal J 39(72):13–29. https://doi.org/10.1080/10293523.2010.11082520

    Article  Google Scholar 

  10. Kumral M (2006) Bed blending design incorporating multiple regression modelling and genetic algorithms. J South Afr Inst Min Metall 106(3):229–236 https://hdl.handle.net/10520/AJA0038223X_3149

    Google Scholar 

  11. Ruiseco JR, Williams J, Kumral M (2016) Optimizing ore–waste dig-limits as part of operational mine planning through genetic algorithms. Nat Resour Res 25(4):473–485. https://doi.org/10.1007/s11053-016-9296-1

    Article  Google Scholar 

  12. Wang H, Tenorio V, Li G, Hou J, Hu N (2020) Optimization of trackless equipment scheduling in underground mines using genetic algorithms. Mining, Metallurgy & Exploration 37(5):1–14. https://doi.org/10.1007/s42461-020-00285-8

    Article  Google Scholar 

  13. Villalba Matamoros ME, Kumral M (2019) Underground mine planning: stope layout optimisation under grade uncertainty using genetic algorithms. Int J Min Reclam Environ 33(5):353–370. https://doi.org/10.1080/17480930.2018.1486692

    Article  Google Scholar 

  14. Bernardi L, Kumral M, Renaud M (2020) Comparison of fixed and mobile in-pit crushing and conveying and truck-shovel systems used in mineral industries through discrete-event simulation. Simulation Modelling Practice and Theory:102100. https://doi.org/10.1016/j.simpat.2020.102100

  15. Ruppert D (2011) Statistics and data analysis for financial engineering, vol 13. Springer, New York

    Book  Google Scholar 

  16. Granger CWJ, Ramanathan R (1984) Improved methods of combining forecasts. J Forecast 3(2):197–204. https://doi.org/10.1002/for.3980030207

    Article  Google Scholar 

  17. Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society 50(4):987–1007. https://doi.org/10.2307/1912773

    Article  MathSciNet  MATH  Google Scholar 

  18. Pham HT, Yang B-S (2010) Estimation and forecasting of machine health condition using ARMA/GARCH model. Mech Syst Signal Process 24(2):546–558. https://doi.org/10.1016/j.ymssp.2009.08.004

    Article  Google Scholar 

  19. Lee Y-H, Mo W-S (2016) Analysis of price discovery and non-linear dynamics between volatility index and volatility index futures. Invest Anal J 45(3):163–176. https://doi.org/10.1080/10293523.2016.1153025

    Article  Google Scholar 

  20. Engle RF (2004) Risk and volatility: econometric models and financial practice. Am Econ Rev 94(3):405–420. https://doi.org/10.1257/0002828041464597

    Article  Google Scholar 

  21. Xiu J, Jin Y (2007) Empirical study of ARFIMA model based on fractional differencing. Physica A: Statistical Mechanics and its Applications 377(1):138–154. https://doi.org/10.1016/j.physa.2006.11.030

    Article  Google Scholar 

  22. Nelsen RB (2006) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  23. Mari DD, Kotz S (2001) Correlation and dependence. Imperial College Press, London

    Book  Google Scholar 

  24. Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229–231

    MathSciNet  MATH  Google Scholar 

  25. Vose D (2008) Risk analysis: a quantitative guide. John Wiley & Sons, Ltd., West Sussex, England

    MATH  Google Scholar 

  26. Embrechts P, Lindskog F, McNeil A (2001) Modelling dependence with copulas. Rapport technique, Département de mathématiques, Institut Fédéral de Technologie de Zurich, Zurich

  27. Embrechts P, McNeil A, Straumann D (2002) Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond:176–223. https://doi.org/10.1017/CBO9780511615337.008

  28. Khedun CP, Mishra AK, Singh VP, Giardino JR (2014) A copula-based precipitation forecasting model: investigating the interdecadal modulation of ENSO’s impacts on monthly precipitation. Water Resour Res 50(1):580–600. https://doi.org/10.1002/2013WR013763

    Article  Google Scholar 

  29. Berentsen GD, Cao R, Francisco-Fernández M, Tjøstheim D (2017) Some properties of local gaussian correlation and other nonlinear dependence measures. J Time Ser Anal 38(2):352–380. https://doi.org/10.1111/jtsa.12183

    Article  MathSciNet  MATH  Google Scholar 

  30. Berg D (2009) Copula goodness-of-fit testing: an overview and power comparison. Eur J Financ 15(7-8):675–701. https://doi.org/10.1080/13518470802697428

    Article  Google Scholar 

  31. Frees EW, Valdez EA (1998) Understanding relationships using copulas. North American Actuarial Journal 2(1):1–25. https://doi.org/10.1080/10920277.1998.10595667

    Article  MathSciNet  MATH  Google Scholar 

  32. Hofert M, Mächler M, McNeil AJ (2012) Estimators for Archimedean copulas in high dimensions. arXiv preprint arXiv:12071708

  33. Genest C, Nešlehová J, Ben Ghorbal N (2011) Estimators based on Kendall’s tau in multivariate copula models. Australian & New Zealand Journal of Statistics 53(2):157–177. https://doi.org/10.1111/j.1467-842X.2011.00622.x

    Article  MathSciNet  MATH  Google Scholar 

  34. Akaike H (1974) A new look at the statistical model identification. In: Parzen E, Tanabe K, Kitagawa G (eds) Selected Papers of Hirotugu Akaike. Springer-Verlag, New York, pp 215–222

    Chapter  Google Scholar 

  35. Gold prices (2020) https://www.gold.org/goldhub/data/gold-prices. Accessed January 24th, 2020

  36. Copper futures, continues contract (2020) https://www.quandl.com/data/CHRIS/CME_HG1-Copper-Futures-Continuous-Contract-1-HG1-Front-Month. Accessed January 24th, 2020

  37. U.S. Government (2020) Daily treasury yield curve rates.

  38. Hustrulid WA, Kuchta M, Martin RK (2013) Open pit mine planning and design, vol 1 – Fundamentals, 3rd edn. CRC Press, Boca Raton, Florida

    Google Scholar 

  39. Kumral M (2013) Multi-period mine planning with multi-process routes. Int J Min Sci Technol 23(3):317–321. https://doi.org/10.1016/j.ijmst.2013.05.001

    Article  Google Scholar 

  40. Lee EJ, Klumpe N, Vilk J, Lee SH (2017) Modeling conditional dependence of stock returns using a copula-based GARCH model. International Journal of Statistics and Probability 6(2):32–41. https://doi.org/10.5539/ijsp.v6n2p32

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the supporting agencies.

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Fund number: 236482) and the Indonesia Endowment Fund for Education (LPDP), Ministry of Finance of the Republic of Indonesia under Grant (Ref: S-926/LPDP.3/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Kumral.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Ardian, A. & Kumral, M. Gold-Copper Mining Investment Evaluation Through Multivariate Copula-Innovated Simulations. Mining, Metallurgy & Exploration 38, 1421–1433 (2021). https://doi.org/10.1007/s42461-021-00424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-021-00424-9

Keywords

Navigation