Skip to main content

Advertisement

Log in

Anti-fall Safety System with Variable Stiffness Layers

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

This paper presents an experimental and numerical study to evaluate the impact energy dissipation, proposing a friction damper with the use of layers (LFD) for the dissipation of kinetic energy generated as a consequence of dynamic loads in an accidental fall due to work at heights.

Methods

The study is performed by experimentation using a free-fall bench and numerical modeling using the finite element software Abaqus. The energy dissipation analysis is presented by comparing the system displacements for different impact masses. The geometry of the dissipator elements for a particular case of working at heights is proposed.

Results

The results show the feasibility of applying the LFD for dynamic loads by dissipating 100% of the kinetic energy caused by an accidental fall for particular conditions.

Conclusions

The use of layer elements as a preload mechanism allows the increase of the friction force with respect to the displacement of the system, increasing the energy dissipation capacity. In addition, the relationship of the geometrical parameters of the LFD allows the sizing of the layer elements and, in turn, the increase in the energy dissipation capacity according to the user's needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Prepared by the authors

Fig. 2

Source: Domínguez et al.

Fig. 3

Source: Domínguez et al.

Fig. 4

Source: Prepared by the authors

Fig. 5

Source: Prepared by the authors

Fig. 6

Source: Prepared by the authors

Fig. 7

Source: Prepared by the authors

Fig. 8

Source: Prepared by the authors

Fig. 9

Source: Prepared by the authors

Fig. 10

Source: Prepared by the authors

Fig. 11

Source: Prepared by the authors

Fig. 12

Source: Prepared by the authors

Fig. 13

Source: Prepared by the authors

Fig. 14

Source: Prepared by the authors

Similar content being viewed by others

Data availability

The data used in this research were obtained by the authors.

References

  1. Rubio J, Rubio M, Hernández C (2013) Analysis of construction equipment safety in temporary work at height. J Constr Eng Manag 139(1):9–14. https://doi.org/10.1061/(asce)co.1943-7862.0000567

    Article  Google Scholar 

  2. HSE (2014) Working at heights. In: Health and safaty executive, pp 171–182. https://doi.org/10.4324/9780080569215-27.

  3. Molino B (2014) Seguridad y evaluación de riesgos profesionales en parques eólicos. Paraninfo, Madrid

  4. Nadhim E, Hon C, Xia B, Stewart I, Fang D (2016) Falls from height in the construction industry: a critical review of the scientific literature. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph13070638

    Article  PubMed  PubMed Central  Google Scholar 

  5. Secretaría del Trabajo Y Previsión Social (2011) “NOM-009-STPS-2011—‘Condiciones de seguridad para realizar trabajos en altura,’” D. Of. la Fed., p 55. http://www.stps.gob.mx/bp/secciones/dgsst/normatividad/normas/nom-009.pdf

  6. LWSC (2015) Protección Contra Caídas en la Construcción. Lat Work Saf Cent 1–123. https://www.osha.gov/sites/default/files/2018-12/fy15_sh-27683-sh5_Fall_Prevention_Student_Workbook_Spanish.pdf. https://www.cdc.gov/spanish/niosh/docs/wp-solutions/2014-124_sp/default.html

  7. Miang Y, Love P (2010) Adequacy of personal fall arrest energy absorbers in relation to heavy workers. Saf Sci 48(6):747–754. https://doi.org/10.1016/j.ssci.2010.02.020

    Article  Google Scholar 

  8. Bobick T, McKenzie E Jr, Kau T (2010) Evaluation of guardrail systems for preventing falls through roof and floor holes. J Saf Res 41(3):203–211. https://doi.org/10.1016/j.jsr.2010.02.008

    Article  Google Scholar 

  9. Wang Q, Pin Y, Miang Y (2014) Evaluating the inadequacies of horizontal lifeline design: case studies in Singapore. CIB W099 Int Conf Achiev Sustain Constr Health Saf 2015:660–670

    Google Scholar 

  10. Bedolla J, Flores V, Bedolla M, Szwedowicz D (2017) Análisis de disipación de energía cinéctica por elementos tubulares deformables. ECORFAN 1(3):41–51

    Google Scholar 

  11. Miang Y, Wang Q (2015) Investigating the adequacy of horizontal lifeline system design through case studies from Singapore. J Constr Eng Manag 141(7):04015017. https://doi.org/10.1061/(asce)co.1943-7862.0000989

    Article  Google Scholar 

  12. Domínguez-Gurría MA, Szwedowicz D, Martínez E, Estrada Q (2022) Impact energy dissipator with variable stiffness and dry friction layers. Dyn New Technol 9(1):1–13

    Google Scholar 

  13. Castro F (2017) Análisis Numérico y Paramétrico del Problema de Contacto en Uniones Mecáncias. Centro Nacional de Investigación y Desarollo Tecnológico

  14. Khalili S, Mittal R, Kalibar S (2005) A study of the mechanical properties of steel/aluminium/GRP laminates. Mater Sci Eng A 412(1–2):137–140. https://doi.org/10.1016/j.msea.2005.08.016

    Article  CAS  Google Scholar 

  15. Instituto Nacional de Seguridad y Salud en el Trabajo (2021) Normas técnicas Protección contra caídas de altura. no. diciembre. pp 2006–2008

  16. Rusin N, Skorentsev A, Kolubaev E (2016) Dry friction of pure aluminum against steel. J Frict Wear 37(1):86–93. https://doi.org/10.3103/S1068366616010141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Alberto Domínguez-Gurría.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez-Gurría, M.A., Szwedowicz, D., Martínez, E. et al. Anti-fall Safety System with Variable Stiffness Layers. J. Vib. Eng. Technol. 12, 2035–2041 (2024). https://doi.org/10.1007/s42417-023-00962-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-023-00962-0

Keywords

Navigation