Skip to main content
Log in

Nonlinear Damped Transient Vibrations of Carbon Nanotube-Reinforced Magneto-Electro-Elastic Shells with Different Electromagnetic Circuits

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In this research work, the nonlinear damped transient response of functionally graded carbon nanotube (CNT)-reinforced magneto-electro-elastic (FG-CNTMEE) shells are investigated using finite element methods.

Method

The controlled response is obtained through active constrained layer damping (ACLD) treatment composed of a 1–3 piezoelectric (PZC) patch and the viscoelastic layer. The FG-CNTMEE shell subjected to different forms of load cases including mechanical and electro-magnetic loads are considered for evaluation. In addition, the influence of open circuit and closed circuit electro-magnetic boundary conditions on the damped transient response of the FG-CNTMEE shell is investigated for the first time in the literature. The equations of motion are derived using the principle of virtual work. The solutions are obtained through the condensation approach and the direct-iterative method.

Results

Several numerical examples are presented to assess the influence of parameters such as shell geometries, CNT distribution pattern, CNT volume fraction, and boundary conditions. Special attention has been paid to understand the effect of coupling fields on the damped response of the FG-CNTMEE shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(a, \, b\;{\text{and}}\;h\) :

Length, width and thickness of the host structure/FG-CNTMEE shell

\(R_{{1}} \;{\text{and}}\;R_{{2}}\) :

Radius of curvature along x- and y-directions from the mid-surface of FG-CNTMEE shell

\(h_{{\text{p}}} \;{\text{and}}\;h_{{\text{v}}}\) :

Thicknesses of the 1–3 PZC piezoelectric layer and viscoelastic layer of the ACLD patch

\(h_{{1}} , \, h_{{2}} , \, h_{{3}} \;{\text{and }}h_{{4}}\) :

Coordinates of the bottom surface of FG-CNTMEE shell, top surface of FG-CNTMEE shell, top surface of viscoelastic layer, top surface of the 1–3 PZC layer, respectively

\(E_{11} , E_{22} \;{\text{and}}\,G_{12}\) :

Effective longitudinal elastic, transverse elastic and shear modulus of CNT reinforced composite

\(\eta_{1} , \eta_{2} \;{\text{and}}\; \eta_{3}\) :

Efficiency parameters related to CNTs

\(E_{11}^{{{\text{CNT}}}} ,\;E_{22}^{{{\text{CNT}}}} ,\;G_{12}^{{{\text{CNT}}}}\) :

Longitudinal elastic, transverse elastic and shear modulus of CNTs

\(V_{{{\text{CNT}}}} ,\;V_{{\text{m}}}\) :

CNT and matrix volume fraction, respectively

\(\upsilon_{12} ,\upsilon_{12}^{{{\text{CNT}}}} ,\;and\;\upsilon_{{\text{m}}}\) :

Poisson’s ratio of overall composite, CNTs and matrix, respectively

\(\rho_{{{\text{CNT}}}} \;{\text{and}}\,\rho_{{\text{m}}}\) :

Densities of CNT and matrix, respectively

\(\rho_{{\text{h}}} ,\;\rho_{{\text{p}}} ,\,\rho_{{\text{v}}}\) :

Density of FG-CNTMEE, piezoelectric and viscoelastic materials, respectively

\([C],\left[ {C^{{{\text{CNT}}}} } \right],\left[ {C^{{\text{m}}} } \right]\) :

Elastic stiffness coefficients of the FG-CNTMEE composite, CNT fiber, matrix, respectively

\([e],\;\left[ {e^{{{\text{CNT}}}} } \right],\;\left[ {e^{{\text{m}}} } \right]\) :

Piezoelectric coefficients of the FG-CNTMEE composite, CNT fiber, matrix, respectively

\([q],\left[ {q^{{{\text{CNT}}}} } \right], \left[ {q^{{\text{m}}} } \right]\) :

Magnetostrictive coefficients of the FG-CNTMEE composite, CNT fiber, matrix, respectively

\([m],\;\left[ {m^{{{\text{CNT}}}} } \right],\;\left[ {m^{{\text{m}}} } \right]\) :

Electromagnetic coefficients of the FG-CNTMEE composite, CNT fiber, matrix, respectively

\([\eta ],\;\left[ {\eta^{{{\text{CNT}}}} } \right], \left[ {\eta^{{\text{m}}} } \right]\) :

Dielectric coefficients of the FG-CNTMEE composite, CNT fiber, matrix, respectively

\([\mu ],\;\left[ {\mu^{{{\text{CNT}}}} } \right], \left[ {\mu^{{\text{m}}} } \right]\) :

Magnetic permeability coefficients of the FG-CNTMEE composite, CNT fiber, matrix, respectively

\(\left[ {M^{*} } \right],\;\left[ {C_{{\text{d}}}^{*} } \right],\;\left[ {K^{*} } \right]\) :

Equivalent mass, damping and stiffness matrices, respectively

\(\left\{ \varepsilon \right\}\) :

Strain tensor

\(\left\{ E \right\},\;\left\{ H \right\}\) :

Electric and magnetic field vector, respectively

\(\left\{ F \right\}\) :

Applied harmonic force component vector

\(\left\{ {F_{{{\text{tp}}1}} } \right\},\,\left\{ {F_{{{\text{tpn}}1}} } \right\},\;\left\{ {F_{{{\text{rp}}1}} } \right\},\,\left\{ {F_{{{\text{rp}}2}} } \right\}\) :

Rotational and translational force component vectors

\(\left\{ {\sigma_{b}^{p} } \right\},\;\left\{ {\sigma_{s}^{p} } \right\}\) :

Bending and shear stress vectors of the piezoelectric layer of the ACLD patch

\(\left\{ \sigma \right\}\) :

Stress tensor

\(\left\{ {\widetilde{{X_{t} }}} \right\},\;\left\{ {\widetilde{{X_{r} }}} \right\}\;{\text{and}}\;\left\{ {\tilde{F}} \right\}\) :

Laplace transforms of translational displacement, rotational displacement and applied force vectors, respectively

\(\left\{ D \right\}\) :

Electric displacement vector

\(\left\{ B \right\}\) :

Magnetic flux vector

\(G(t)\) :

Relaxation functions of the viscoelastic material

\(G^{\infty }\) :

Final value of the relaxation G(t)

\(s\tilde{G}\left( s \right)\) :

Material modulus function of the viscoelastic material in the Laplace domain

L :

Laplace operator

V :

Applied control voltage

\(Z\;{\text{and}}\;Z_{r}\) :

Auxiliary dissipation coordinates

\(u_{0} ,v_{0} ,{\text{ and}}\;w_{0}\) :

Midplane displacement along x-, y- and z-axes

\(q_{x} ,k_{x} \;{\text{and}}\;g_{x}\) :

Rotations of the normal to mid-plane of the substrate, viscoelastic layer and piezoelectric patch about the y-axis

\(q_{y} ,\;k_{y} \;{\text{and}}\;g_{y}\) :

Rotations of the normal to mid-plane of the substrate, viscoelastic layer and piezoelectric patch about the x-axis

\(\left\{ {d_{t} } \right\}\) :

Translational displacement

\(\left\{ {d_{r} } \right\}\) :

Rotational displacement

\(\psi\) :

Magnetic potential

\(\phi\) :

Electric potential

\(E_{z} , \, H_{z}\) :

Transverse electromagnetic fields

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Google Scholar 

  2. Van Do VN, Lee YK, Lee CH (2020) Isogeometric analysis of FG-CNTRC plates in combination with hybrid type higher-order shear deformation theory. Thin-Walled Struct 148:106565

    Google Scholar 

  3. Xiang P, Xia Q, Jiang LZ, Peng L, Yan JW, Liu X (2020) Free vibration analysis of FG-CNTRC conical shell panels using the kernel particle Ritz element-free method. Compos Struct 255:112987

    Google Scholar 

  4. Qin B, Zhong R, Wang T, Wang Q, Xu Y, Hu Z (2020) A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions. Compos Struct 232:111549

    Google Scholar 

  5. Yang J, Huang XH, Shen HS (2020) Nonlinear vibration of temperature-dependent FG-CNTRC laminated plates with negative Poisson’s ratio. Thin-Walled Struct 148:106514

    Google Scholar 

  6. Yang J, Huang XH, Shen HS (2020) Nonlinear flexural behavior of temperature-dependent FG-CNTRC laminated beams with negative Poisson’s ratio resting on the Pasternak foundation. Eng Struct 207:110250

    Google Scholar 

  7. Foroutan K, Ahmadi H, Carrera E (2019) Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment. Compos Struct 227:111310

    Google Scholar 

  8. Mellouli H, Jrad H, Wali M, Dammak F (2020) Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method. Comput Math Appl 79(11):3160–3178

    MathSciNet  MATH  Google Scholar 

  9. Fu T, Wu X, Xiao Z, Chen Z (2021) Dynamic instability analysis of FG-CNTRC laminated conical shells surrounded by elastic foundations within FSDT. Eur J Mech A/Solids. 85:104139

    MathSciNet  MATH  Google Scholar 

  10. Ansari R, Hassani R, Gholami R, Rouhi H (2020) Thermal postbuckling analysis of FG-CNTRC plates with various shapes and temperature-dependent properties using the VDQ-FEM technique. Aerosp Sci Technol 106:106078

    Google Scholar 

  11. Jiao P, Chen Z, Ma H, Zhang D, Ge P (2019) Buckling analysis of thin rectangular FG-CNTRC plate subjected to arbitrarily distributed partial edge compression loads based on differential quadrature method. Thin-Walled Struct 145:106417

    Google Scholar 

  12. Nguyen TN, Lee S, Nguyen PC, Nguyen-Xuan H, Lee J (2020) Geometrically nonlinear postbuckling behavior of imperfect FG-CNTRC shells under axial compression using isogeometric analysis. Eur J Mech A/Solids. 84:104066

    MathSciNet  MATH  Google Scholar 

  13. Sofiyev AH, Turkaslan BE, Bayramov RP, Salamci MU (2019) Analytical solution of stability of FG-CNTRC conical shells under external pressures. Thin-Walled Struct. 144:106338

    Google Scholar 

  14. Yadav A, Amabili M, Panda SK, Dey T, Kumar R (2021) Nonlinear damped vibrations of three-phase CNT-FRC circular cylindrical shell. Compos Struct 255:112939

    Google Scholar 

  15. Patnaik SS, Roy T (2020) Vibration characteristics and damping properties of functionally graded carbon nanotubes reinforced hybrid composite skewed shell structures under hygrothermal conditions. J Vib Control, p 1077546320961718.

  16. Lee SY, Hwang JG (2019) Finite element nonlinear transient modelling of carbon nanotubes reinforced fiber/polymer composite spherical shells with a cutout. Nanotechnol Rev 8(1):444–451

    Google Scholar 

  17. Malikan M, Dimitri R, Tornabene F (2019) Transient response of oscillated carbon nanotubes with an internal and external damping. Compos B Eng 158:198–205

    Google Scholar 

  18. Phung-Van P, Thanh CL, Nguyen-Xuan H, Abdel-Wahab M (2018) Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments. Compos Struct 201:882–892

    Google Scholar 

  19. Thanh CL, Tran LV, Vu-Huu T, Nguyen-Xuan H, Abdel-Wahab M (2019) Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates. Comput Methods Appl Mech Eng 353:253–276

    MathSciNet  MATH  Google Scholar 

  20. Thomas B, Roy T (2017) Vibration and damping analysis of functionally graded carbon nanotubes reinforced hybrid composite shell structures. J Vib Control 23(11):1711–1738

    Google Scholar 

  21. Huang DJ, Ding HJ, Chen WQ (2007) Analytical solution for functionally graded magneto-electro-elastic plane beams. Int J Eng Sci 45(2–8):467–485

    Google Scholar 

  22. Milazzo A (2014) Refined equivalent single layer formulations and finite elements for smart laminates free vibrations. Compos Part B Eng 61:238–253

    Google Scholar 

  23. Bhangale RK, Ganesan N (2005) Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells. J Sound Vib 288:412–422

    Google Scholar 

  24. Vinyas M, Sunny KK, Harursampath D, Trung NT, Loja MAR (2019) Influence of interphase on the multiphysics coupled frequency of three phase smart magneto-electro-elastic composite plates. Compos Struct 226:111254

    Google Scholar 

  25. Vinyas M, Nischith G, Loja MAR, Ebrahimi F, Duc ND (2019) Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos Struct 214:132–142

    Google Scholar 

  26. Vinyas M, Kattimani SC (2018) Finite element evaluation of free vibration characteristics of magneto-electro-elastic plates in hygrothermal environment using higher order shear deformation theory. Compos Struct 202:1339–1352

    Google Scholar 

  27. Vinyas M (2020) On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electromagnetic conditions using HSDT. Compos Struct 240:112044

    Google Scholar 

  28. Vinyas M, Harursampath D (2020) Computational evaluation of electromagnetic circuits' effect on the coupled response of multifunctional magneto-electro-elastic composites plates exposed to hygrothermal fields. Proc Inst Mech Eng Part C J Mech Eng Sci, Volume: 235 issue: 15, page(s): 2832-2850

  29. Vinyas M, Kattimani SC, Loja MAR, Vishwas M (2018) Effect of BaTiO3/CoFe2O4 micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams in different thermal environment. Mater Res Express. 5:125702

    Google Scholar 

  30. Li XY, Ding HJ, Chen WQ (2008) Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load. Compos Struct 83:381–390

    Google Scholar 

  31. Sladek J, Sladek V, Krahulec S, Pan E (2013) The MLPG analyses of large deflections of magnetoelectroelastic plates. Eng Anal Bound Elem 37(4):673–682

    MathSciNet  MATH  Google Scholar 

  32. Wu CP, Tsai YH (2007) Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int J Eng Sci 45:744–769

    Google Scholar 

  33. Kiran MC, Kattimani S (2018) Buckling analysis of skew magneto-electro-elastic plates under in-plane loading. J Intell Mater Syst Struct 29(10):2206–2222

    Google Scholar 

  34. Kiran MC, Kattimani SC (2017) Buckling characteristics and static studies of multilayered magneto-electro-elastic plate. Struct Eng Mech 64(6):751–763

    Google Scholar 

  35. Jamalpoor A, Ahmadi-Savadkoohi A, Hosseini M, Hosseini-Hashemi S (2017) Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco-Pasternak medium via nonlocal elasticity theory. Eur J Mech-A/Solids 63:84–98

    MathSciNet  MATH  Google Scholar 

  36. Kumaravel A, Ganesan N, Sethuraman R (2007) Buckling and vibration analysis of layered and multiphase magneto-electro-elastic beam under thermal environment. Multidiscip Model Mater Struct 3(4):461–476

    Google Scholar 

  37. Kumaravel A, Ganesan N, Sethuraman R (2010) Buckling and vibration analysis of layered and multiphase magneto-electro-elastic cylinders subjected to uniform thermal loading. Multidiscip Model Mater Struct 6(4):475–492

    Google Scholar 

  38. Li YS, Ma P, Wang W (2016) Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory. J Intell Mater Syst Struct 27(9):1139–1149

    Google Scholar 

  39. Mohammadimehr M, Okhravi SV, AkhavanAlavi SM (2018) Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. J Vib Control 24(8):1551–1569

    MathSciNet  Google Scholar 

  40. Vinyas M (2019) A higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos Part B Eng 158:286–301

    Google Scholar 

  41. Vinyas M, Harursampath D, Kattimani SC (2021) On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods. Def Technol 17(1):287–303

    Google Scholar 

  42. Vinyas M, Harursampath D (2020) Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes. Compos Struct 253:112749

    Google Scholar 

  43. Mahesh V, Harursampath D (2020) Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Eng Comput. https://doi.org/10.1007/s00366-020-01098-5

    Article  Google Scholar 

  44. Mahesh V, Harursampath D (2020) Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multiphysics loading. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1805059

    Article  Google Scholar 

  45. Mahesh V (2020) Nonlinear deflection of carbon nanotube reinforced multiphase magneto-electro-elastic plates in thermal environment considering pyrocoupling effects. Math Methods Appl Sci. https://doi.org/10.1002/mma.6858

    Article  Google Scholar 

  46. Kattimani S (2021) Effect of piezoelectric interphase thickness on nonlinear behavior of multiphase magneto–electro–elastic fibrous composite plate. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00312-y

    Article  Google Scholar 

  47. Chang W, Jin X, Huang Z, Cai G (2021) Random response of nonlinear system with inerter-based dynamic vibration absorber. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00334-6

    Article  Google Scholar 

  48. Wang X, Wang D (2021) Three-dimensional vibration absorber platform for variable multiple frequency excitation and impulse response suppressing. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00320-y

    Article  Google Scholar 

  49. Faal RT, Crawford B, Sourki R et al (2021) Experimental, numerical and analytical investigation of the torsional vibration suppression of a shaft with multiple optimal undamped absorbers. J Vib Eng Technol. https://doi.org/10.1007/s42417-021-00295-w

    Article  Google Scholar 

  50. Damanpack AR, Bodaghi M, Aghdam MM, Shakeri M (2013) Active control of geometrically nonlinear transient response of sandwich beams with a flexible core using piezoelectric patches. Compos Struct 1(100):517–531

    Google Scholar 

  51. Gao JX, Shen YP (2003) Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators. J Sound Vib 264(4):911–928

    MATH  Google Scholar 

  52. Baz A, Poh S (1988) Performance of an active control system with piezoelectric actuators. J Sound Vib 126:327–343

    Google Scholar 

  53. Sarangi SK, Ray MC (2011) Active damping of geometrically nonlinear vibrations of laminated composite plates using vertically reinforced 1–3 piezoelectric composites. Acta Mech 222(3):363–380

    MATH  Google Scholar 

  54. Sarangi SK, Ray MC (2010) Smart damping of geometrically nonlinear vibrations of laminated composite beams using vertically reinforced 1–3 piezoelectric composites. Smart Mater Struct 19(7):075020

    Google Scholar 

  55. Shivakumar J, Ashok MH, Ray MC (2013) Active control of geometrically nonlinear transient vibrations of laminated composite cylindrical panels using piezoelectric fiber reinforced composite. Acta Mech 224(1):1–5

    MathSciNet  MATH  Google Scholar 

  56. Panda S, Ray MC (2009) Active control of geometrically nonlinear vibrations of functionally graded laminated composite plates using piezoelectric fiber reinforced composites. J Sound Vib 325(1–2):186–205

    Google Scholar 

  57. Kattimani SC, Ray MC (2014) Smart damping of geometrically nonlinear vibrations of magneto-electro-elastic plates. Compos Struct 114:51–63

    Google Scholar 

  58. Vinyas M, Harursampath D, Nguyen-Thoi T (2020) Influence of active constrained layer damping on the coupled vibration response of functionally graded magneto-electro-elastic plates with skewed edges. Def Technol 16(5):1019–1038

    Google Scholar 

  59. Vinyas M (2020) Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study. Mater Res Express. 6(12):125707

    Google Scholar 

  60. Mahesh V, Kattimani S (2019) Finite element simulation of controlled frequency response of skew multiphase magneto-electro-elastic plates. J Intell Mater Syst Struct 30(12):1757–1771

    Google Scholar 

  61. Vinyas M (2019) Vibration control of skew magneto-electro-elastic plates using active constrained layer damping. Compos Struct 208, 600-617

  62. Kiani Y (2016) Free vibration of FG-CNT reinforced composite skew plates. Aerosp Sci Technol 58:178–188

    Google Scholar 

  63. Arani AG, Haghparast E, Rarani MH, Maraghi ZK (2015) Strain gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube reinforced composite micro-tubes conveying viscous fluid. Comput Mater Sci 96:448–458

    Google Scholar 

Download references

Funding

There are no relevant financial or non-financial competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinyas Mahesh.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The expanded representation of various material property matrices of Eq. (2.a) can be shown as follows:

$$\begin{aligned} \left[ {\overline{C}_{b}^{h} } \right] & = \left[ {\begin{array}{*{20}c} {\overline{C}_{11}^{h} } & {\overline{C}_{12}^{h} } & {\overline{C}_{13}^{h} } & {\overline{C}_{16}^{h} } \\ {\overline{C}_{12}^{h} } & {\overline{C}_{22}^{h} } & {\overline{C}_{23}^{h} } & {\overline{C}_{26}^{h} } \\ {\overline{C}_{13}^{h} } & {\overline{C}_{32}^{h} } & {\overline{C}_{33}^{h} } & {\overline{C}_{36}^{h} } \\ {\overline{C}_{16}^{h} } & {\overline{C}_{26}^{h} } & {\overline{C}_{36}^{h} } & {\overline{C}_{66}^{h} } \\ \end{array} } \right];\;\left[ {\overline{C}_{s}^{h} } \right] = \left[ {\begin{array}{*{20}c} {\overline{C}_{55}^{h} } & {\overline{C}_{45}^{h} } \\ {\overline{C}_{45}^{h} } & {\overline{C}_{66}^{h} } \\ \end{array} } \right]; \, \\ \left\{ {\overline{e}^{h} } \right\} & = \left\{ {\begin{array}{*{20}c} {\overline{e}_{31}^{h} } \\ {\overline{e}_{32}^{h} } \\ {\overline{e}_{33}^{h} } \\ {\overline{e}_{36}^{h} } \\ \end{array} } \right\};\left\{ {\overline{q}^{h} } \right\} = \left\{ {\begin{array}{*{20}c} {\overline{q}_{31}^{h} } \\ {\overline{q}_{32}^{h} } \\ {\overline{q}_{33}^{h} } \\ {\overline{q}_{36}^{h} } \\ \end{array} } \right\}. \\ \end{aligned}$$
(27)

Also, the elastic stiffness coefficient matrices, piezoelectric coefficient matrices of 1–3 PZC (Eq. 3) can be given as follows:

$$\begin{aligned} \left[ {\overline{C}_{b}^{p} } \right] & = \left[ {\begin{array}{*{20}c} {\overline{C}_{11}^{p} } & {\overline{C}_{12}^{p} } & {\overline{C}_{13}^{p} } & {\overline{C}_{16}^{p} } \\ {\overline{C}_{12}^{p} } & {\overline{C}_{22}^{p} } & {\overline{C}_{23}^{p} } & {\overline{C}_{26}^{p} } \\ {\overline{C}_{13}^{p} } & {\overline{C}_{32}^{p} } & {\overline{C}_{33}^{p} } & {\overline{C}_{36}^{p} } \\ {\overline{C}_{16}^{p} } & {\overline{C}_{26}^{p} } & {\overline{C}_{36}^{p} } & {\overline{C}_{66}^{p} } \\ \end{array} } \right];\left[ {\overline{C}_{s}^{p} } \right] = \left[ {\begin{array}{*{20}c} {\overline{C}_{55}^{p} } & {\overline{C}_{45}^{p} } \\ {\overline{C}_{45}^{p} } & {\overline{C}_{66}^{p} } \\ \end{array} } \right];\;\left[ {\overline{C}_{bs}^{p} } \right] = \left[ {\begin{array}{*{20}c} {\overline{C}^{p}_{15} } & {\overline{C}^{p}_{25} } & {\overline{C}^{p}_{35} } & 0 \\ 0 & 0 & 0 & {\overline{C}^{p}_{46} } \\ \end{array} } \right]^{{\text{T}}} ; \\ \left[ {\overline{C}_{bs}^{p} } \right] & = \left[ {\begin{array}{*{20}c} {\overline{C}^{p}_{15} } & {\overline{C}^{p}_{25} } & {\overline{C}^{p}_{35} } & 0 \\ 0 & 0 & 0 & {\overline{C}^{p}_{46} } \\ \end{array} } \right]^{{\text{T}}} ; \\ \left\{ {\overline{e}_{b}^{p} } \right\} & = \left\{ {\begin{array}{*{20}c} {\overline{e}_{31}^{p} } \\ {\overline{e}_{32}^{p} } \\ {\overline{e}_{33}^{p} } \\ {\overline{e}_{36}^{p} } \\ \end{array} } \right\};\left\{ {\overline{e}_{s}^{p} } \right\} = \left\{ {\begin{array}{*{20}c} {\overline{e}_{35}^{p} } \\ {\overline{e}_{34}^{p} } \\ \end{array} } \right\}. \\ \end{aligned}$$

Appendix B

Equation (17) can be expanded using the FE parameters and can be re-written as follows:

$$\begin{gathered} \int\limits_{{\Omega ^{h} }} {\delta \left( {\left[ {B_{{tb}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{1} } \right]\left[ {B_{{rb}} } \right]\left\{ {d_{r}^{e} } \right\} + \frac{1}{2}\left[ {B_{1} } \right]\left[ {B_{2} } \right]\left\{ {d_{t}^{e} } \right\}} \right)^{{\text{T}}} \times \left[ {\left[ {\bar{C}_{b}^{h} } \right] \times \left[ {\left[ {B_{{tb}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{1} } \right]\left[ {B_{{rb}} } \right]\left\{ {d_{r}^{e} } \right\}} \right.} \right.} \hfill \\ \left. { + \frac{1}{2}\left[ {B_{1} } \right]\left[ {B_{2} } \right]\left\{ {d_{t}^{e} } \right\}} \right] + \left. {\left\{ {e_{b}^{h} } \right\}\frac{1}{h}\left[ {N_{\phi } } \right]\left\{ \phi \right\} + \left\{ {q_{b}^{h} } \right\}\frac{1}{H}\left[ {N_{\psi } } \right]\left\{ \psi \right\}} \right]{\text{d}}\Omega ^{h} \hfill \\ + \int\limits_{{\Omega ^{h} }} {\delta \left( {\left[ {B_{{ts}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{3} } \right]\left[ {B_{{rs}} } \right]\left\{ {d_{r}^{e} } \right\}} \right)^{{\text{T}}} \times \left[ {\left[ {\bar{C}_{s}^{h} } \right]\left( {\left[ {B_{{ts}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{3} } \right]\left[ {B_{{rs}} } \right]\left\{ {d_{r}^{e} } \right\}} \right)} \right]{\text{d}}\Omega ^{h} } \hfill \\ + \int\limits_{{\Omega ^{h} }} {\delta \left[ {\frac{1}{h}\left\{ {\phi ^{e} } \right\}^{{\text{T}}} \left[ {N_{\phi } } \right]^{{\text{T}}} } \right] \times \left[ {\left\{ {e_{b}^{h} } \right\}^{{\text{T}}} \left( {\left[ {B_{{tb}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{1} } \right]\left[ {B_{{rb}} } \right]\left\{ {d_{r}^{e} } \right\}} \right)} \right.} - \left. { \in _{{33}}^{h} \left( {\frac{1}{h}\left[ {N_{\phi } } \right]\left\{ {\phi ^{e} } \right\}} \right) - d_{{33}}^{h} \left( {\frac{1}{h}\left[ {N_{\psi } } \right]\left\{ {\psi ^{e} } \right\}} \right)} \right]{\text{d}}\Omega ^{h} \hfill \\ + \int\limits_{{\Omega ^{h} }} {\delta \left[ {\frac{1}{h}\left\{ {\psi ^{e} } \right\}^{{\text{T}}} \left[ {N_{\psi } } \right]^{{\text{T}}} } \right]} \times \left[ {\left\{ {q_{b}^{h} } \right\}^{{\text{T}}} \left( {\left[ {B_{{tb}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{1} } \right]\left[ {B_{{rb}} } \right]\left\{ {d_{r}^{e} } \right\}} \right)} \right. - \left. {d_{{33}}^{h} \left( {\frac{1}{h}\left[ {N_{\phi } } \right]\left\{ {\phi ^{e} } \right\}} \right) - \mu _{{33}}^{h} \left( {\frac{1}{h}\left[ {N_{\psi } } \right]\left\{ {\psi ^{e} } \right\}} \right)} \right]{\text{d}}\Omega ^{h} {\text{ }} \hfill \\ + \int\limits_{{\Omega ^{p} }} {\delta \left( {\left[ {B_{{tb}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{2} } \right]\left[ {B_{{rb}} } \right]\left\{ {d_{r}^{e} } \right\} + \frac{1}{2}\left[ {B_{1} } \right]\left[ {B_{2} } \right]\left\{ {d_{t}^{e} } \right\}} \right)^{{\text{T}}} \times \left[ {\left[ {\bar{C}_{b}^{p} } \right] \times \left[ {\left[ {B_{{tb}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{2} } \right]\left[ {B_{{rb}} } \right]\left\{ {d_{r}^{e} } \right\}} \right.} \right.} \hfill \\ \left. {\left. { + \frac{1}{2}\left[ {B_{1} } \right]\left[ {B_{2} } \right]\left\{ {d_{t}^{e} } \right\}} \right] + \left[ {\bar{C}_{{bs}}^{p} } \right]\left( {\left[ {B_{{ts}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{5} } \right]\left[ {B_{{rs}} } \right]\left\{ {d_{r}^{e} } \right\}} \right) + \frac{1}{{h_{p} }}\left\{ {e_{b}^{p} } \right\}V} \right]{\text{d}}\Omega ^{p} \hfill \\ \int\limits_{{\Omega ^{p} }} {\delta \left( {\left[ {B_{{ts}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{5} } \right]\left[ {B_{{rs}} } \right]\left\{ {d_{r}^{e} } \right\}} \right)^{{\text{T}}} \times \left[ {\left[ {\bar{C}_{{bs}}^{p} } \right]^{{\text{T}}} \times \left[ {\left[ {B_{{tb}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{2} } \right]\left[ {B_{{rb}} } \right]\left\{ {d_{r}^{e} } \right\}} \right.} \right.} \hfill \\ \left. {\left. { + \frac{1}{2}\left[ {B_{1} } \right]\left[ {B_{2} } \right]\left\{ {d_{t}^{e} } \right\}} \right] + \left[ {\bar{C}_{s}^{p} } \right]\left( {\left[ {B_{{ts}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{5} } \right]\left[ {B_{{rs}} } \right]\left\{ {d_{r}^{e} } \right\}} \right) + \frac{1}{{h_{p} }}\left\{ {e_{s}^{p} } \right\}V} \right]{\text{d}}\Omega ^{p} \hfill \\ + \int\limits_{{\Omega ^{v} }} {\delta \left( {\left[ {B_{{ts}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{4} } \right]\left[ {B_{{rs}} } \right]\left\{ {d_{r}^{e} } \right\}} \right)^{{\text{T}}} \left[ {\left[ {\overline{C} _{s}^{v} } \right]\left( {\left[ {B_{{ts}} } \right]\left\{ {d_{t}^{e} } \right\} + \left[ {Z_{4} } \right]\left[ {B_{{rs}} } \right]\left\{ {d_{r}^{e} } \right\}} \right)} \right]{\text{d}}\Omega ^{v} } \hfill \\ - \int\limits_{A} \delta \left\{ {d_{t} } \right\}^{{\text{T}}} \left\{ f \right\}dA + \int\limits_{A} {Q^{\phi } } \delta \left[ {N_{\phi } } \right]\left\{ \phi \right\}dA + \int\limits_{A} {Q^{\psi } } \delta \left[ {N_{\psi } } \right]\left\{ \psi \right\}{\text{d}}A \hfill \\ + \frac{1}{2}\left\{ {d_{t}^{e} } \right\}^{{\text{T}}} \left[ {M^{e} } \right]\left\{ {\ddot{d}_{t}^{e} } \right\}. \hfill \\ \end{gathered}$$
(29)

The different nonlinear and linear stiffness matrices, force vectors leading to Eq. (22) can be represented as follows:

$$\begin{aligned} \left[ {K_{{{\text{NL}}1}}^{e} } \right] & = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{{\text{T}}} \left[ {B_{1} } \right]^{{\text{T}}} \left[ {D_{1} } \right]\left[ {B_{{tb}} } \right]} } {\text{ d}}x{\text{d}}y;\;\;\left[ {K_{{{\text{NL}}2}}^{e} } \right] = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{{\text{T}}} \left[ {B_{1} } \right]^{{\text{T}}} \left[ {D_{2} } \right]\left[ {B_{{rb}} } \right]} } {\text{ d}}xdy; \\ \left[ {K_{{{\text{NL}}3}}^{e} } \right] & = \frac{1}{4}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{{\text{T}}} \left[ {B_{1} } \right]^{{\text{T}}} \left[ {D_{1} } \right]\left[ {B_{1} } \right]} } \left[ {B_{2} } \right]{\text{ d}}x{\text{d}}y;\;\left[ {K_{{{\text{NL}}4}}^{e} } \right] = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{{\text{T}}} \left[ {B_{1} } \right]^{{\text{T}}} \left[ {D_{3} } \right]} } {\text{ }}\left[ {N_{\phi } } \right]{\text{d}}x{\text{d}}y; \\ \left[ {K_{{{\text{NL}}5}}^{e} } \right] & = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{{\text{T}}} \left[ {B_{1} } \right]^{{\text{T}}} \left[ {D_{4} } \right]} } {\text{ }}\left[ {N_{\psi } } \right]{\text{d}}x{\text{d}}y;\;\left[ {K_{{{\text{NL}}6}}^{e} } \right] = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{T} \left[ {D_{5} } \right]} } {\text{ }}\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y; \\ \left[ {K_{{{\text{NL}}7}}^{e} } \right] & = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{1} } \right]} } {\text{ }}\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y;\left[ {K_{{{\text{NL}}8}}^{e} } \right] = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{T} \left[ {B_{1} } \right]^{T} \left[ {D_{{13}} } \right]} } {\text{ }}\left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y; \\ \left[ {K_{{{\text{NL}}9}}^{e} } \right] & = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{{\text{T}}} \left[ {B_{1} } \right]^{{\text{T}}} \left[ {D_{{14}} } \right]} } {\text{ }}\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;\left[ {K_{{{\text{NL}}10}}^{e} } \right] = \frac{1}{4}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{T} \left[ {B_{1} } \right]^{T} \left[ {D_{{13}} } \right]} } {\text{ }}\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y; \\ \left[ {K_{{{\text{NL}}11}}^{e} } \right] & = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{{\text{T}}} \left[ {B_{1} } \right]^{{\text{T}}} \left[ {D_{{14}} } \right]} } {\text{ }}\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;\left[ {K_{{{\text{NL}}12}}^{e} } \right] = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{2} } \right]^{T} \left[ {B_{1} } \right]^{T} \left[ {D_{{15}} } \right]} } {\text{ }}\left[ {B_{{rs}} } \right]{\text{d}}x{\text{d}}y; \\ \left[ {K_{{{\text{NL}}13}}^{e} } \right] & = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{{17}} } \right]} } {\text{ }}\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y;\left[ {K_{{{\text{NL}}14}}^{e} } \right] = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{T} \left[ {D_{{13}} } \right]} } {\text{ }}\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y; \\ \left[ {K_{{{\text{NL}}15}}^{e} } \right] & = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{{24}} } \right]} } {\text{ }}\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y;\left[ {K_{{{\text{NL}}16}}^{e} } \right] = \frac{1}{2}\int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{T} \left[ {D_{{24}} } \right]} } {\text{ }}\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y; \\ \end{aligned}$$
$$\begin{aligned} \left[ {K_{1}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{5} } \right]\left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y;} \;} \left[ {K_{2}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{6} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \;\left[ {K_{3}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{7} } \right]\left[ {N_{\phi } } \right]{\text{d}}x{\text{d}}y;} } \;\left[ {K_{4}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{8} } \right]\left[ {N_{\psi } } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{5}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{1} } \right]} \left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y;} \;\left[ {K_{6}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{2} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{7}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{3} } \right]\left[ {N_{\phi } } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{8}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{4} } \right]\left[ {N_{\psi } } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{9}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{9} } \right]\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{10}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{T} \left[ {D_{{10}} } \right]\left[ {B_{{rs}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{11}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{11}} } \right]\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{12}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{12}} } \right]\left[ {B_{{rs}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{13}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{{17}} } \right]\left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{14}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{{18}} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{15}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{{17s}} } \right]\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{16}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{{19}} } \right]\left[ {B_{{rs}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{17}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{{13}} } \right]\left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{18}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{{14}} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{19}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{{21}} } \right]\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{18}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{{14}} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{21}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{{24}} } \right]\left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{22}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{{25}} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{23}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{{25}} } \right]\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{24}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{{26}} } \right]\left[ {B_{{rs}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{25}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{24}} } \right]\left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{26}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{28}} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{27}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{29}} } \right]\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{28}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{30}} } \right]\left[ {B_{{rs}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{29}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{{31}} } \right]\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{30}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{{32}} } \right]\left[ {B_{{rs}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{31}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{33}} } \right]\left[ {B_{{ts}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{32}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{34}} } \right]\left[ {B_{{rs}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{33}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {N_{\phi } } \right]^{{\text{T}}} \left[ {D_{{35}} } \right]\left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{34}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {N_{\phi } } \right]^{{\text{T}}} \left[ {D_{{36}} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{35}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {N_{\phi } } \right]^{{\text{T}}} \left[ {D_{{37}} } \right]\left[ {N_{\phi } } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{36}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {N_{\phi } } \right]^{{\text{T}}} \left[ {D_{{38}} } \right]\left[ {N_{\psi } } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{37}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {N_{\psi } } \right]^{{\text{T}}} \left[ {D_{{39}} } \right]\left[ {B_{{tb}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{38}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {N_{\psi } } \right]^{{\text{T}}} \left[ {D_{{40}} } \right]\left[ {B_{{rb}} } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {K_{{39}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {N_{\psi } } \right]^{{\text{T}}} \left[ {D_{{41}} } \right]\left[ {N_{\phi } } \right]{\text{d}}x{\text{d}}y;} } \left[ {K_{{40}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {N_{\psi } } \right]^{T} \left[ {D_{{42}} } \right]\left[ {N_{\psi } } \right]{\text{d}}x{\text{d}}y;} } \\ \left[ {F_{{{\text{tp}}N1}}^{e} } \right] & = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{1} } \right]^{{\text{T}}} \left[ {B_{2} } \right]\left[ {D_{{16}} } \right]{\text{d}}x{\text{d}}y;} } {\text{ }}\left[ {F_{{tp1}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{tb}} } \right]^{{\text{T}}} \left[ {D_{{23}} } \right]{\text{d}}x{\text{d}}y;} } \left[ {F_{{tp2}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{ts}} } \right]^{{\text{T}}} \left[ {D_{{27}} } \right]{\text{d}}x{\text{d}}y;} } {\text{ }}\left[ {F_{{rp1}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rb}} } \right]^{{\text{T}}} \left[ {D_{{20}} } \right]{\text{d}}x{\text{d}}y;} } {\text{ }}\left[ {F_{{rp2}}^{e} } \right] = \int\limits_{0}^{{a_{e} }} {\int\limits_{0}^{{b_{e} }} {\left[ {B_{{rs}} } \right]^{{\text{T}}} \left[ {D_{{27}} } \right]{\text{d}}x{\text{d}}y;} } \\ \end{aligned}$$
$$\begin{gathered} \left[ {K_{T1}^{e} } \right] = \left[ {K_{NL1} } \right] + \left[ {K_{NL3} } \right] + \left[ {K_{5} } \right] + \left[ {K_{NL17} } \right] + \left[ {K_{11} } \right];\left[ {K_{T2}^{e} } \right] = \left[ {K_{NL2} } \right] + \left[ {K_{6} } \right] + \left[ {K_{12} } \right]; \hfill \\ \left[ {K_{T3}^{e} } \right] = \left[ {K_{NL14} } \right] + \left[ {K_{7} } \right];\left[ {K_{T4}^{e} } \right] = \left[ {K_{NL15} } \right] + \left[ {K_{8} } \right];\left[ {K_{T5}^{e} } \right] = \left[ {K_{NL6} } \right] + \left[ {K_{1} } \right] + \left[ {K_{9} } \right]; \hfill \\ \left[ {K_{T6}^{e} } \right] = \left[ {K_{2} } \right] + \left[ {K_{10} } \right];\left[ {K_{T7}^{e} } \right] = \left[ {K_{NL8} } \right] + \left[ {K_{NL10} } \right] + \left[ {K_{17} } \right] + \left[ {K_{NL11} } \right] + \left[ {K_{19} } \right] + \left[ {K_{NL14} } \right]; \hfill \\ \left[ {K_{T8}^{e} } \right] = \left[ {K_{NL19} } \right] + \left[ {K_{NL12} } \right] + \left[ {K_{18} } \right] + \left[ {K_{20} } \right];\left[ {K_{T9}^{e} } \right] = \left[ {K_{NL13} } \right] + \left[ {K_{13} } \right] + \left[ {K_{15} } \right];\left[ {K_{T10}^{e} } \right] = \left[ {K_{14} } \right] + \left[ {K_{16} } \right];\left[ {K_{T11}^{e} } \right] = \left[ {K_{NL15} } \right] + \left[ {K_{21} } \right] + \left[ {K_{23} } \right];\left[ {K_{T12}^{e} } \right] = \left[ {K_{22} } \right] + \left[ {K_{24} } \right]; \hfill \\ \left[ {K_{T13}^{e} } \right] = \left[ {K_{NL16} } \right] + \left[ {K_{25} } \right] + \left[ {K_{27} } \right];\left[ {K_{T14}^{e} } \right] = \left[ {K_{26} } \right] + \left[ {K_{28} } \right] + \left[ {K_{32} } \right];\left[ {K_{T15}^{e} } \right] = \left[ {K_{T1} } \right] + \left[ {K_{T7} } \right] + \left[ {K_{T13} } \right];\left[ {K_{T16}^{e} } \right] = \left[ {K_{T2} } \right] + \left[ {K_{T8} } \right] + \left[ {K_{T14} } \right];\left[ {K_{T17}^{e} } \right] = \left[ {K_{T5} } \right] + \left[ {K_{T9} } \right] + \left[ {K_{T11} } \right] + \left[ {K_{T29} } \right]; \hfill \\ \left[ {K_{T18}^{e} } \right] = \left[ {K_{T6} } \right] + \left[ {K_{T10} } \right] + \left[ {K_{T12} } \right] + \left[ {K_{30} } \right]; \hfill \\ \left[ {K_{C1}^{{}} } \right] = - \left[ {K_{40} } \right]^{ - 1} \left[ {K_{37} } \right];\left[ {K_{C2}^{{}} } \right] = - \left[ {K_{40} } \right]^{ - 1} \left[ {K_{38} } \right];\left[ {K_{C3}^{{}} } \right] = - \left[ {K_{40} } \right]^{ - 1} \left[ {K_{39} } \right]; \hfill \\ \left[ {K_{C4}^{{}} } \right] = \left[ {K_{33} } \right] - \left[ {K_{36} } \right]\left[ {K_{C1} } \right];\left[ {K_{C5}^{{}} } \right] = \left[ {K_{34} } \right] - \left[ {K_{36} } \right]\left[ {K_{C2} } \right]; \hfill \\ \left[ {K_{C6}^{{}} } \right] = \left[ {K_{35} } \right] - \left[ {K_{36} } \right]\left[ {K_{C3} } \right];\left[ {K_{C7}^{{}} } \right] = - \left[ {K_{C6} } \right]^{ - 1} \left[ {K_{C4} } \right];\left[ {K_{C8}^{{}} } \right] = - \left[ {K_{C6} } \right]^{ - 1} \left[ {K_{C5} } \right]; \hfill \\ \left[ {K_{C9}^{{}} } \right] = \left[ {K_{T17} } \right] - \left[ {K_{4} } \right]\left[ {K_{C1} } \right];\left[ {K_{C10}^{{}} } \right] = \left[ {K_{T18} } \right] - \left[ {K_{4} } \right]\left[ {K_{C2} } \right];\left[ {K_{C11}^{{}} } \right] = \left[ {K_{3} } \right] - \left[ {K_{4} } \right]\left[ {K_{C3} } \right]; \hfill \\ \left[ {K_{C12}^{{}} } \right] = \left[ {K_{C9} } \right] - \left[ {K_{C11} } \right]\left[ {K_{C7} } \right];\left[ {K_{C13}^{{}} } \right] = \left[ {K_{C10} } \right] - \left[ {K_{C11} } \right]\left[ {K_{C8} } \right]; \hfill \\ \left[ {K_{C14}^{{}} } \right] = \left[ {K_{T15} } \right] - \left[ {K_{T4} } \right]\left[ {K_{C1} } \right];\left[ {K_{C15}^{{}} } \right] = \left[ {K_{T16} } \right] - \left[ {K_{T4} } \right]\left[ {K_{C2} } \right];\left[ {K_{C16}^{{}} } \right] = \left[ {K_{T3} } \right] - \left[ {K_{T4} } \right]\left[ {K_{C3} } \right]; \hfill \\ \left[ {K_{C17}^{{}} } \right] = \left[ {K_{C14} } \right] - \left[ {K_{C16} } \right]\left[ {K_{C7} } \right];\left[ {K_{C18}^{{}} } \right] = \left[ {K_{C15} } \right] - \left[ {K_{C16} } \right]\left[ {K_{C8} } \right]; \hfill \\ \left[ {K_{{}}^{*} } \right] = \left[ {K_{C17} } \right] - \left[ {K_{C18} } \right]\left[ {K_{C13} } \right]^{ - 1} \left[ {K_{C12} } \right]; \hfill \\ \left\{ {F_{{}}^{*} } \right\} = \left\{ F \right\} - \left( {\left\{ {F_{tp1} } \right\} + \left\{ {F_{tp2} } \right\} + \left\{ {F_{tpN1} } \right\}} \right)V + \left[ {K_{C18} } \right]\left[ {K_{C13} } \right]\left( {\left\{ {F_{rp1} } \right\} + \left\{ {F_{rp2} } \right\}} \right)V. \hfill \\ \end{gathered}$$
(30)

The various rigidity matrices contributing to the stiffness matrices and force vectors of Eq. (30) are shown as follows:

$$\begin{gathered} \left[ {D_{1} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {\bar{C}_{b}^{h} } \right]} {\text{ }}{\rm d}z;\left[ {D_{2} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {\bar{C}_{b}^{h} } \right]} \left[ {Z_{1} } \right]{\text{ }}{\rm d}z;\left[ {D_{3} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left\{ {\overline{e} _{b}^{h} } \right\}\frac{1}{h}} {\text{ }}{\rm d}z;\left[ {D_{4} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left\{ {\overline{q} _{b}^{h} } \right\}\frac{1}{h}{\text{ }}} {\rm d}z; \hfill \\ \left[ {D_{5} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {Z_{1} } \right]^{{\rm T}} \left[ {\bar{C}_{b}^{h} } \right]} {\text{ }}{\rm d}z;\left[ {D_{6} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {Z_{1} } \right]^{{\rm T}} \left[ {\bar{C}_{b}^{h} } \right]} \left[ {Z_{1} } \right]{\text{ }}{\rm d}z;\left[ {D_{7} } \right] = \int\limits_{{h1}}^{{h_{2} }} {\left[ {z_{1} } \right]^{{\rm T}} \left\{ {\overline{e} _{b}^{h} } \right\}\frac{1}{h}} {\text{ }}{\rm d}z; \hfill \\ \left[ {D_{8} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {Z_{1} } \right]^{{\rm T}} \left\{ {\overline{q} _{b}^{h} } \right\}} \frac{1}{h}{\rm d}z;\left[ {D_{9} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {Z_{3} } \right]^{{\rm T}} \left[ {\bar{C}_{s}^{h} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{10}} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {Z_{3} } \right]^{{\rm T}} \left[ {\bar{C}_{s}^{h} } \right]} \left[ {Z_{3} } \right]{\text{ }}{\rm d}z; \hfill \\ \left[ {D_{{11}} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {\bar{C}_{s}^{h} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{12}} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left[ {\bar{C}_{s}^{h} } \right]} \left[ {Z_{3} } \right]{\rm d}z;\left[ {D_{{13}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {\bar{C}_{b}^{p} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{14}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {\bar{C}_{b}^{p} } \right]} \left[ {Z_{2} } \right]{\text{ }}{\rm d}z; \hfill \\ \left[ {D_{{14}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {\bar{C}_{{bs}}^{p} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{15}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {\bar{C}_{{bs}}^{p} } \right]} \left[ {Z_{5} } \right]{\text{ }}{\rm d}z;\left[ {D_{{16}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left\{ {e_{b}^{p} } \right\}\frac{1}{{h_{p} }}} {\text{ }}{\rm d}z;\left[ {D_{{17}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {Z_{2} } \right]^{{\rm T}} {\text{ }}\left[ {\bar{C}_{b}^{p} } \right]} {\text{ }}{\rm d}z; \hfill \\ \left[ {D_{{17}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {Z_{2} } \right]^{{\rm T}} {\text{ }}\left[ {\bar{C}_{{bs}}^{p} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{18}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {Z_{2} } \right]^{{\rm T}} {\text{ }}\left[ {\bar{C}_{b}^{p} } \right]} \left[ {Z_{2} } \right]{\text{ }}{\rm d}z;\left[ {D_{{19}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {Z_{2} } \right]^{{\rm T}} {\text{ }}\left[ {\bar{C}_{{bs}}^{p} } \right]} \left[ {Z_{5} } \right]{\text{ }}{\rm d}z; \hfill \\ \left[ {D_{{20}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {Z_{2} } \right]^{{\rm T}} \left\{ {e_{b}^{p} } \right\}\frac{1}{{h_{p} }}} {\text{ }}{\rm d}z;\left[ {D_{{21}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {\bar{C}_{{bs}}^{p} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{22}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {\bar{C}_{{bs}}^{p} } \right]} \left[ {Z_{5} } \right]{\text{ }}{\rm d}z;\left[ {D_{{23}} } \right] = \left[ {D_{{16}} } \right]; \hfill \\ \left[ {D_{{24}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {Z_{5} } \right]^{{\rm T}} \left[ {\bar{C}_{{bs}}^{p} } \right]^{{\rm T}} } {\rm d}z;\left[ {D_{{25}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {Z_{5} } \right]^{{\rm T}} \left[ {\bar{C}_{{bs}}^{p} } \right]^{{\rm T}} } \left[ {Z_{2} } \right]{\rm d}z;\left[ {D_{{25\_s}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {Z_{5} } \right]^{{\rm T}} \left[ {\bar{C}_{s}^{p} } \right]} {\text{ }}{\rm d}z; \hfill \\ \left[ {D_{{26}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {Z_{5} } \right]^{{\rm T}} \left[ {\bar{C}_{s}^{p} } \right]^{{\rm T}} } \left[ {Z_{5} } \right]{\rm d}z;\left[ {D_{{27}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {\left[ {z_{5} } \right]^{{\rm T}} \left\{ {e_{s}^{p} } \right\}\frac{1}{{h_{p} }}} {\text{ }}{\rm d}z; \hfill \\ \left[ {D_{{28}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {\bar{C}_{{bs}}^{p} } \right]^{{\rm T}} } \left[ {Z_{2} } \right]{\rm d}z;\left[ {D_{{29}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {\bar{C}_{s}^{p} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{30}} } \right] = \int\limits_{{h_{3} }}^{{h_{4} }} {{\text{ }}\left[ {\bar{C}_{s}^{p} } \right]} \left[ {Z_{5} } \right]{\rm d}z; \hfill \\ \left[ {D_{{31}} } \right] = \int\limits_{{h_{2} }}^{{h_{3} }} {{\text{ }}\left[ {Z_{4} } \right]^{{\rm T}} \left[ {\bar{C}_{s}^{v} } \right]{\text{ }}} {\rm d}z;\left[ {D_{{32}} } \right] = \int\limits_{{h_{2} }}^{{h_{3} }} {{\text{ }}\left[ {Z_{4} } \right]^{{\rm T}} \left[ {\bar{C}_{s}^{v} } \right]\left[ {Z_{4} } \right]{\text{ }}} {\rm d}z;\left[ {D_{{33}} } \right] = \int\limits_{{h_{2} }}^{{h_{3} }} {{\text{ }}\left[ {\bar{C}_{s}^{v} } \right]{\text{ }}} {\rm d}z; \hfill \\ \left[ {D_{{34}} } \right] = \int\limits_{{h_{2} }}^{{h_{3} }} {{\text{ }}\left[ {\bar{C}_{s}^{v} } \right]\left[ {Z_{4} } \right]{\text{ }}} {\rm d}z;\left[ {D_{{35}} } \right] = \left[ {D_{3} } \right]^{{\rm T}} ;\left[ {D_{{36}} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left\{ {e_{b}^{h} } \right\}\frac{1}{h}\left[ {Z_{1} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{37}} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\frac{{\overline{ \in } _{{33}}^{h} }}{h}} {\text{ }}{\rm d}z; \hfill \\ \left[ {D_{{38}} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\frac{{\overline{d} _{{33}}^{h} }}{h}} {\text{ }}{\rm d}z;\left[ {D_{{39}} } \right] = \left[ {D_{4} } \right]^{{\rm T}} ;\left[ {D_{{40}} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\left\{ {q_{b}^{h} } \right\}\frac{1}{h}\left[ {Z_{1} } \right]} {\text{ }}{\rm d}z;\left[ {D_{{41}} } \right] = \left[ {D_{{38}} } \right]; \hfill \\ \left[ {D_{{42}} } \right] = \int\limits_{{h_{1} }}^{{h_{2} }} {\frac{{\overline{\mu } _{{33}}^{h} }}{h}{\text{ }}} {\rm d}z. \hfill \\ \end{gathered}$$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, V. Nonlinear Damped Transient Vibrations of Carbon Nanotube-Reinforced Magneto-Electro-Elastic Shells with Different Electromagnetic Circuits. J. Vib. Eng. Technol. 10, 351–374 (2022). https://doi.org/10.1007/s42417-021-00380-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00380-0

Keywords

Navigation