Skip to main content
Log in

A Modified Newton–Harmonic Balance Approach to Strongly Odd Nonlinear Oscillators

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

Since combinations of the Newton’s method and the harmonic balance (HB) method require, at each iteration step, calculating the first or the first- and second-order derivatives of the restoring force function, and expanding the function, its first- and second-order derivatives into Fourier series, the procedural costs are high and sometimes difficult to achieve algebraically. It is thus preferable to avoid expensive re-linearization or computation of the second-order derivative.

Purpose

A new approach is proposed to construct accurate analytical approximation solutions to strongly nonlinear conservative oscillators with odd nonlinearities.

Methods

The approach is based on a combination of a modified Newton method and the HB method. For the modified Newton method, two simplified Newton steps are taken between each Newton step where only one linearization of the restoring force function is required. The resulting equations are solved by applying the HB method appropriately.

Results

Using only one modified Newton iteration step may achieve highly accurate analytical approximation solutions to the strongly nonlinear oscillators. Three examples with physical implications are used to illustrate the proposed method.

Conclusion

Through the modified Newton iteration step, the multiple cumbersome linearizations of the restoring force function are replaced by only one linearization, and the corresponding governing equations can be properly solved by the HB method. The current work is expected to extend to the study of other nonlinear oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  2. Hagedorn P (1988) Non-linear oscillations. Clarendon, Oxford

    MATH  Google Scholar 

  3. Mickens RE (1996) Oscillations in planar dynamic systems. World Scientific, Singapore

    Book  Google Scholar 

  4. Gottlieb HPW (2006) Harmonic balance approach to limit cycles for nonlinear jerk equations. J Sound Vib 297(1–2):243–250

    Article  MathSciNet  Google Scholar 

  5. Sanmiguel-Rojas E, Hidalgo-Martínez M, Jiménez-González JI et al (2015) Analytical approaches to oscillators with nonlinear springs in parallel and series connections. Mech Mach Theory 93:39–52

    Article  Google Scholar 

  6. Lau SL, Cheung YK (1981) Amplitude incremental variational principle for nonlinear vibration of elastic system. J Appl Mech 48(4):959–964

    Article  Google Scholar 

  7. Wu BS, Sun WP, Lim CW (2006) An analytical approximate technique for a class of strongly non-linear oscillators. Int J Non-Linear Mech 41(6–7):766–774

    Article  MathSciNet  Google Scholar 

  8. Sun WP, Wu BS (2008) Accurate analytical approximate solutions to general strong nonlinear oscillators. Nonlinear Dyn 51(1–2):277–287

    MATH  Google Scholar 

  9. Wu BS, Lim CW (2004) Large amplitude nonlinear oscillations of a general conservative system. Int J Non-Linear Mech 39(5):859–870

    Article  Google Scholar 

  10. Beléndez A, Méndez DI, Alvarez ML et al (2009) Approximate analytical solutions for the relativistic oscillator using a linearized harmonic balance method. Int J Mod Phys B 23(4):521–536

    Article  Google Scholar 

  11. Sun WP, Lim CW, Wu BS et al (2009) Analytical approximate solutions to oscillation of a current-carrying wire in a magnetic field. Nonlinear Anal Real Word Appl 10(3):1882–1890

    Article  MathSciNet  Google Scholar 

  12. Yu YP, Wu BS, Sun YH et al (2013) Analytical approximate solutions to large amplitude vibration of a spring-hinged beam. Meccanica 48(10):2569–2575

    Article  MathSciNet  Google Scholar 

  13. Yamgoué SB, Lekeufack OT, Kofané TC (2017) Harmonic balance for non-periodic hyperbolic solutions of nonlinear ordinary differential equations. Math Model Anal 22(2):140–156

    Article  MathSciNet  Google Scholar 

  14. Wu BS, Liu WJ, Chen X et al (2017) Asymptotic analysis and accurate approximate solutions for strongly nonlinear conservative symmetric oscillators. Appl Math Model 49:243–254

    Article  MathSciNet  Google Scholar 

  15. Ortega JM, Rheinboldt WC (2000) Iterative solution of nonlinear equations in several variables. SIAM, Philadelphia

    Book  Google Scholar 

  16. Mickens RE (2001) Oscillations in an x4/3 potential. J Sound Vib 246(2):375–378

    Article  MathSciNet  Google Scholar 

  17. Gottlieb HPW (2003) Frequencies of oscillators with fractional-power nonlinearities. J Sound Vib 261(3):557–566

    Article  Google Scholar 

  18. Cveticanin L (2009) Oscillator with fraction order restoring force. J Sound Vib 320(4–5):1064–1077

    Article  Google Scholar 

  19. Febbo M (2011) Finite extensibility nonlinear oscillator. Appl Math Comput 217(14):6464–6475

    MathSciNet  MATH  Google Scholar 

  20. Beléndez A, Arribas E, Francés J et al (2012) Comments on ‘A finite extensibility nonlinear oscillator’. Appl Math Comput 218(10):6168–6175

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant no. 11672118), and Research and Development Plans in Key Areas of Guangdong (Grant no. 2019B090917002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baisheng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The expressions of \(P_{1} , \, P_{2} , \, P_{3} , \, P_{4} , \, P_{\varOmega } , \, P_{\text{D}}\) are as follows.

$$\begin{aligned} P_{1} & = A(4835703278458516698824704a^{18} + 64450857758204917876523008A^{2} a^{17} b \\ & \quad + 405627669046088175630417920A^{4} a^{16} b^{2} + 1601728426736958931994673152A^{6} a^{15} b^{3} \\ & \quad + 4446974127479403668997931008A^{8} a^{14} b^{4} + 9218243172947523910489866240A^{10} a^{13} b^{5} \\ & \quad + 14785841346111404889052545024A^{12} a^{12} b^{6} + 18763524784922459763638272000A^{14} a^{11} b^{7} \\ & \quad + 19097688409745225496597102592A^{16} a^{10} b^{8} + 15706504179898943441370873856A^{18} a^{9} b^{9} \\ & \quad + 10462605459329565715349897216A^{20} a^{8} b^{10} + 5631582647280319099400355840A^{22} a^{7} b^{11} \\ & \quad + 2431167864190925491283165184A^{24} a^{6} b^{12} + 830354811239768360374763520A^{26} a^{5} b^{13} \\ & \quad + 219441322192563605505425408A^{28} a^{4} b^{14} + 43298251336294969181174272A^{30} a^{3} b^{15} \\ & \quad + 6006532208423496497883712A^{32} a^{2} b^{16} + 522786540947589345532344A^{34} ab^{17} \\ & \quad + 21485079498804067272519A^{36} b^{18} ), \\ \end{aligned}$$
$$\begin{aligned} P_{2} & = 151115727451828646838272A^{3} a^{17} b + 1905474875837901843726336A^{5} a^{16} b^{2} \\ & \quad + 11309108495780967390117888A^{7} a^{15} b^{3} + 41958844166223266993668096A^{9} a^{14} b^{4} \\ & \quad + 108994977581964717830701056A^{11} a^{13} b^{5} + 210370424231974451810402304A^{13} a^{12} b^{6} \\ & \quad + 312399213313109590649339904A^{15} a^{11} b^{7} + 364578510827628201919905792A^{17} a^{10} b^{8} \\ & \quad + 338516618651629734938542080A^{19} a^{9} b^{9} + 251508624790868463311650816A^{21} a^{8} b^{10} \\ & \quad + 149524255540205269240774656A^{23} a^{7} b^{11} + 70726792708396755185565696A^{25} a^{6} b^{12} \\ & \quad + 26291888445896461967163392A^{27} a^{5} b^{13} + 7520040035850389352161280A^{29} a^{4} b^{14} \\ & \quad + 1598200207932246614587392A^{31} a^{3} b^{15} + 237821684972978253124992A^{33} a^{2} b^{16} \\ & \quad + 22124179993691481314304A^{35} ab^{17} + 968822190832147158876A^{37} b^{18} , \\ \end{aligned}$$
$$\begin{aligned} P_{3} & = 4722366482869645213696A^{5} a^{16} b^{2} + 56004315007782198706176A^{7} a^{15} b^{3} \\ & \quad + 311498637957687129669632A^{9} a^{14} b^{4} + 1078614993058995309117440A^{11} a^{13} b^{5} \\ & \quad + 2602451747004176945643520A^{13} a^{12} b^{6} + 4639338980186234088849408A^{15} a^{11} b^{7} \\ & \quad + 6321057386653510862372864A^{17} a^{10} b^{8} + 6714526431619256808374272A^{19} a^{9} b^{9} \\ & \quad + 5619858774906742100721664A^{21} a^{8} b^{10} + 3718495779890683638185984A^{23} a^{7} b^{11} \\ & \quad + 1938655501211025962696704A^{25} a^{6} b^{12} + 788025466700714743824384A^{27} a^{5} b^{13} \\ & \quad + 244828243490659897270272A^{29} a^{4} b^{14} + 56204195663850721290240A^{31} a^{3} b^{15} \\ & \quad + 8991209738990145619840A^{33} a^{2} b^{16} + 895544245281147035584A^{35} ab^{17} \\& \quad + 41838930607835396004A^{37} b^{18} , \\ \end{aligned}$$
$$\begin{aligned} P_{4} & = 147573952589676412928A^{7} a^{15} b^{3} + 1639454379550936399872A^{9} a^{14} b^{4} \\ & \quad + 8504309305950292934656A^{11} a^{13} b^{5} + 27323998716602209009664A^{13} a^{12} b^{6} \\ & \quad + 60811895858419925516288A^{15} a^{11} b^{7} + 99305437243272100577280A^{17} a^{10} b^{8} \\ & \quad + 122919731096436997095424A^{19} a^{9} b^{9} + 117436631194839132667904A^{21} a^{8} b^{10} \\ & \quad + 87312998556222355406848A^{23} a^{7} b^{11} + 50518231926325423112192A^{25} a^{6} b^{12} \\ & \quad + 22560699826636333907968A^{27} a^{5} b^{13} + 7637023311131482243072A^{29} a^{4} b^{14} \\ & \quad + 1896881805586013365760A^{31} a^{3} b^{15} + 326363394510536538304A^{33} a^{2} b^{16} \\ & \quad + 34780496959236928136A^{35} ab^{17} + 1730732174725245369A^{37} b^{18} , \\ \end{aligned}$$
$$\begin{aligned} P_{\varOmega } & = 3A^{8} b^{4} (442721857769029238784a^{15} + 5102830579389904715776A^{2} a^{14} b \\ & \quad + 27312638386542166933504A^{4} a^{13} b^{2} + 90077300039570776129536A^{6} a^{12} b^{3} \\ & \quad + 204746874013667683205120A^{8} a^{11} b^{4} + 339795427352756527038464A^{10} a^{10} b^{5} \\ & \quad + 425361925658199361323008A^{12} a^{9} b^{6} + 408978801242226020057088A^{14} a^{8} b^{7} \\& \quad + 304485598886042791837696A^{16} a^{7} b^{8} + 175505115520599790190592A^{18} a^{6} b^{9} \\ & \quad + 77662337412392581988352A^{20} a^{5} b^{10} + 25901296598274638692352A^{22} a^{4} b^{11} \\ & \quad + 6299629977693939730944A^{24} a^{3} b^{12} + 1054263188601994088768A^{26} a^{2} b^{13} \\ & \quad + 108476685824622319800A^{28} ab^{14} + 5168358617143777623A^{30} b^{15} ), \\ \end{aligned}$$

and

$$P_{\text{D}} = 134217728\left( {4a + 3A^{2} b} \right)^{12} \left( {32a + 23A^{2} b} \right)^{3} \left( {65536a^{3} + 144384A^{2} a^{2} b + 105984A^{4} ab^{2} + 25923A^{6} b^{3} } \right).$$

The expressions of \(R_{1} , \, R_{2} , \, R_{3} , \, R_{\varOmega } , \, D_{\text{SN2}}\) are as follows.

$$\begin{aligned} R_{1} & = - 24576A^{2} S_{1} + 22912A^{4} S_{1} - 3840A^{6} S_{1} - 98304S_{2} + 165376A^{2} S_{2} - 84096A^{4} S_{2} \\ & \quad + 11520A^{6} S_{2} - 32768S_{3} + 28672A^{2} S_{3} + 6704A^{4} S_{3} - 6276A^{6} S_{3} + 24576A^{2} S_{1} \varOmega_{\text{SN1}} \\ & \quad - 22912A^{4} S_{1} \varOmega_{\text{SN1}} + 3840A^{6} S_{1} \varOmega_{\text{SN1}} - 24576S_{1}^{3} \varOmega_{\text{SN1}} + 22912A^{2} S_{1}^{3} \varOmega_{\text{SN1}} - 3840A^{4} S_{1}^{3} \varOmega_{\text{SN1}} \\ & \quad + 884736S_{2} \varOmega_{\text{SN1}} - 1488384A^{2} S_{2} \varOmega_{\text{SN1}} + 756864A^{4} S_{2} \varOmega_{\text{SN1}} - 103680A^{6} S_{2} \varOmega_{\text{SN1}} \\ & \quad - 630784S1^{2} S_{2} \varOmega_{\text{SN1}} + 920832A^{2} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} - 381084A^{4} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} + 35541A^{6} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} \\ & \quad - 233472S_{1} S_{2}^{2} \varOmega_{\text{SN1}} + 7296A^{2} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} + 194180A^{4} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} - 45771A^{6} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} \\ & \quad - 663552S_{2}^{3} \varOmega_{\text{SN1}} + 1116288A^{2} S_{2}^{3} \varOmega_{\text{SN1}} - 567648A^{4} S_{2}^{3} \varOmega_{\text{SN1}} + 77760A^{6} S_{2}^{3} \varOmega_{\text{SN1}} \\ & \quad + 819200S_{3} \varOmega_{\text{SN1}} - 716800A^{2} S_{3} \varOmega_{\text{SN1}} - 167600A^{4} S_{3} \varOmega_{\text{SN1}} \, + 156900A^{6} S_{3} \varOmega_{\text{SN1}} \\ & \quad - 1216512S_{1}^{2} S_{3} \varOmega_{\text{SN1}} + 1651968A^{2} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} - 555768A^{4} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} + 22194A^{6} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} \\ & \quad - 2007040S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} + 2849280A^{2} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} - 1274560A^{4} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} \\ & \quad + 210000A^{6} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} - 704512S_{2}^{2} S_{3} \varOmega_{\text{SN1}} + 352256A^{2} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} + 390440A^{4} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} \\ & \quad - 176214A^{6} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} - 626688A^{2} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} + 584256A^{4} S_{1} S_{3}^{2} \varOmega_{\text{SN1}} - 97920A^{6} S_{1} S_{3}^{2} \varOmega_{\text{SN1}} \\ & \quad - 3141632S_{2} S_{3}^{2} \varOmega_{\text{SN1}} + 5203328A^{2} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} - 2652640A^{4} S_{2} S3_{3}^{2} \varOmega_{\text{SN1}} + 403560A^{6} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} \\ & \quad - 614400S_{3}^{3} \varOmega_{\text{SN1}} + 537600A^{2} S_{3}^{3} \varOmega_{\text{SN1}} + 125700A^{4} S_{3}^{3} \varOmega_{\text{SN1}} - 117675A^{6} S_{3}^{3} \varOmega_{\text{SN1}} \\ \end{aligned}$$
$$\begin{aligned} R_{2} & = 2816A^{4} S_{1} - 1056A^{6} S_{1} + 11264A^{2} S_{2} - 12672A^{4} S_{2} + 3168A^{6} S_{2} + 32768S_{3} \\ & - 53248A^{2} S_{3} + 26368A^{4} S_{3} - 4128A^{6} S_{3} - 2816A^{4} S_{1} \varOmega_{\text{SN1}} + 1056A^{6} S_{1} \varOmega_{\text{SN1}} + 2816A^{2} S_{1}^{3} \varOmega_{\text{SN1}} \\ & - 1056A^{4} S_{1}^{3} \varOmega_{\text{SN1}} - 101376A^{2} S_{2} \varOmega_{\text{SN1}} + 114048A^{4} S_{2} \varOmega_{\text{SN1}} - 28512A^{6} S_{2} \varOmega_{\text{SN1}} + 90112S_{1}^{2} S_{2} \varOmega_{\text{SN1}} \\ & - 84480A^{2} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} + 10560A^{4} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} + 3168A^{6} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} + 233472S_{1} S_{2}^{2} \varOmega_{\text{SN1}} \\ & - 350208A^{2} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} + 170620A^{4} S_{1} S_{2}^{2} 2^{2} \varOmega_{\text{SN1}} - 23997A^{6} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} + 76032A^{2} S_{2}^{3} \varOmega_{\text{SN1}} \\ & - 85536A^{4} S_{2}^{3} \varOmega_{\text{SN1}} + 21384A^{6} S_{2}^{3} \varOmega_{\text{SN1}} - 819200S_{3} \varOmega_{\text{SN1}} + 1331200A^{2} S_{3} \varOmega_{\text{SN1}} - 659200A^{4} S_{3} \varOmega_{\text{SN1}} \\ & + 103200A^{6} S_{3} \varOmega_{\text{SN1}} + 552960S_{1}^{2} S_{3} \varOmega_{\text{SN1}} - 781056A^{2} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} + 296892A^{4} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} \\ & - 26325A^{6} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} + 286720S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} - 161280A^{2} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} - 103880A^{4} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} \\ & + 57750A^{6} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} + 704512S_{2}^{2} S_{3} \varOmega_{\text{SN1}} - 1144832A^{2} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} + 597184A^{4} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} \\ & - 100104A^{6} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} + 71808A^{4} S_{1} S_{3}^{2} \varOmega_{\text{SN1}} - 26928A^{6} S_{1} S_{3}^{2} \varOmega_{\text{SN1}} + 241664S_{2} S_{3}^{2} \varOmega_{\text{SN1}} \\ & + 30208A^{2} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} - 316004A^{4} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} + 110979A^{6} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} + 614400S_{3}^{3} \varOmega_{\text{SN1}} \\ & - 998400A^{2} S_{3}^{3} \varOmega_{\text{SN1}} + 494400A^{4} S_{3}^{3} \varOmega_{\text{SN1}} - 77400A^{6} S_{3}^{3} \varOmega_{\text{SN1}} \\ \end{aligned}$$
$$\begin{aligned} R_{3} & = - 396A^{6} S_{1} - 1584A^{4} S_{2} + 1188A^{6} S_{2} - 4608A^{2} S_{3} + 5760A^{4} S_{3} - 1548A^{6} S_{3} + 396A^{6} S_{1} \varOmega_{\text{SN1}} \\ & \quad - 396A^{4} S_{1}^{3} \varOmega_{\text{SN1}} + 14256A^{4} S_{2} \varOmega_{\text{SN1}} - 10692A^{6} S_{2} \varOmega_{\text{SN1}} - 12672A^{2} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} + 7128A^{4} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} \\ & \quad + 1188A^{6} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} - 77824S_{1} S_{2}^{2} \varOmega_{\text{SN1}} + 116736A^{2} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} - 43776A^{4} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} \\ & \quad - 2660A^{6} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} - 10692A^{4} S_{2}^{3} \varOmega_{\text{SN1}} + 8019A^{6} S_{2}^{3} \varOmega_{\text{SN1}} + 115200A^{2} S_{3} \varOmega_{\text{SN1}} - 144000A^{4} S_{3} \varOmega_{\text{SN1}} \\ & \quad + 38700A^{6} S_{3} \varOmega_{\text{SN1}} - 110592S_{1}^{2} S_{3} \varOmega_{\text{SN1}} + 134784A^{2} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} - 34020A^{4} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} \\ & \quad - 864A^{6} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} - 286720S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} + 510720A^{2} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} - 289800A^{4} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} \\ & \quad + 45010A^{6} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} - 99072A^{2} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} + 123840A^{4} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} - 37539A^{6} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} \\ & \quad - 10098A^{6} S_{1} S_{3}^{2} \varOmega_{\text{SN1}} - 241664S_{2} S_{3}^{2} \varOmega_{\text{SN1}} + 430464A^{2} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} - 267624A^{4} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} \\ & \quad + 61301A^{6} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} - 86400A^{2} S_{3}^{3} \varOmega_{\text{SN1}} + 108000A^{4} S_{3}^{3} \varOmega_{\text{SN1}} - 29025A^{6} S_{3}^{3} \varOmega_{\text{SN1}} \\ \end{aligned}$$
$$\begin{aligned} R_{\varOmega } & = - 262144S_{1} + 405504A^{2} S_{1} - 166912A^{4} S_{1} + 14100A^{6} S_{1} - 40960A^{2} S_{2} + 48512A^{4} S_{2} \\ & \quad - 10272A^{6} S_{2} + 16384A^{2} S_{3} - 24576A^{4} S_{3} + 8532A^{6} S_{3} + 262144S_{1} \varOmega_{\text{SN1}} - 405504A^{2} S_{1} \varOmega_{\text{SN1}} \\ & \quad + 166912A^{4} S_{1} \varOmega_{\text{SN1}} - 14100A^{6} S_{1} \varOmega_{\text{SN1}} - 196608S_{1}^{3} \varOmega_{\text{SN1}} + 293888A^{2} S_{1}^{3} \varOmega_{\text{SN1}} - 113056A^{4} S_{1}^{3} \varOmega_{\text{SN1}} \\ & \quad + 8007A^{6} S_{1}^{3} \varOmega_{\text{SN1}} + 368640A^{2} S_{2} \varOmega_{\text{SN1}} - 436608A^{4} S_{2} \varOmega_{\text{SN1}} + 92448A^{6} S_{2} \varOmega_{\text{SN1}} - 720896S_{1}^{2} S_{2} \varOmega_{\text{SN1}} \\ & \quad + 934912A^{2} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} - 259776A^{4} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} + 5742A^{6} S_{1}^{2} S_{2} \varOmega_{\text{SN1}} - 2490368S_{1} S_{2}^{2} \varOmega_{\text{SN1}} \\ & \quad + 3969024A^{2} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} - 1718816A^{4} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} + 156180A^{6} S_{1} S_{2}^{2} \varOmega_{\text{SN1}} - 276480A^{2} S_{2}^{3} \varOmega_{\text{SN1}} \\ & \quad + 327456A^{4} S_{2}^{3} \varOmega_{\text{SN1}} - 69336A^{6} S_{2}^{3} \varOmega_{\text{SN1}} - 409600A^{2} S_{3} \varOmega_{\text{SN1}} + 614400A^{4} S_{3} \varOmega_{\text{SN1}} - 213300A^{6} S_{3} \varOmega_{\text{SN1}} \\ & \quad - 27648A^{4} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} + 19845A^{6} S_{1}^{2} S_{3} \varOmega_{\text{SN1}} - 4587520S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} + 6522880A^{2} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} \\ & \quad - 2132480A^{4} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} - 420A^{6} S_{1} S_{2} S_{3} \varOmega_{\text{SN1}} - 2818048S_{2}^{2} S_{3} \varOmega_{\text{SN1}} + 4711424A^{2} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} \\ & \quad - 2322688A^{4} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} + 335013A^{6} S_{2}^{2} S_{3} \varOmega_{\text{SN1}} - 6684672S_{1} S_{3}^{2} \varOmega_{\text{SN1}} + 10340352A^{2} S_{1} S_{3}^{2} \varOmega_{\text{SN1}} \\ & \quad - 4256256A^{4} S_{1} S_{3}^{2} \varOmega_{\text{SN1}} + 359550A^{6} S_{1} S_{3}^{2} \varOmega_{\text{SN1}} - 1087488A^{2} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} + 1380128A^{4} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} \\ & \quad - 359841A^{6} S_{2} S_{3}^{2} \varOmega_{\text{SN1}} + 307200A^{2} S_{3}^{3} \varOmega_{\text{SN1}} - 460800A^{4} S_{3}^{3} \varOmega_{\text{SN1}} + 159975A^{6} S_{3}^{3} \varOmega_{\text{SN1}} \\ \end{aligned}$$
$$D_{\text{SN2}} = 262144 - 602112A^{2} + 460800A^{4} - 127156A^{6} + 8007A^{8}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Liu, W., Zhong, H. et al. A Modified Newton–Harmonic Balance Approach to Strongly Odd Nonlinear Oscillators. J. Vib. Eng. Technol. 8, 721–736 (2020). https://doi.org/10.1007/s42417-019-00176-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-019-00176-3

Keywords

Navigation