Skip to main content
Log in

Impact Behaviors of Cantilevered Nano-beams Based on the Nonlocal Theory

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The present study is motivated by the shock response of a nano-cantilever component in nano-scaled electromechanical system (NEMS). For this purpose, the mechanical properties of a cantilevered nano-beams subjected to impact load are presented for the first time. Our work is concerned with the special moment that the impact deformation gets most and the impact velocity reduces to zero.

Methods

The nonlocal theory proposed by Eringen is applied to reveal the nonlocal effect involved in impact behaviors at nano-scale. To this end, the classical impact stress is determined first using the law of conservation of energy. Subsequently, the nonlocal impact stress is obtained from the nonlocal constitutive equation and clamped-free boundary constraints of cantilevered nano-beams, where an imaginary equivalent symmetrical nano-structure is constructed to solve the unknown coefficients in general solution of stress of nonlocal field. The bending moment in nonlocal theory is gained from the stress of nonlocal field and the deflection in nonlocal field under impact load is calculated. Finally, the nonlocal dynamical load coefficient is derived via the maximal nonlocal impact deflection divided by the corresponding traditional static deflection at free edge. In numerical examples, the maximal stress of nonlocal field, the maximal nonlocal impact deflection, and the nonlocal dynamical load coefficient are calculated, respectively, to show the significant nonlocal small-scale effect in cantilevered nano-beams subjected to impact load.

Results and Conclusions

The conclusion is that the nonlocality plays a remarkable role in nano-scaled impact behaviors and it cannot be neglected. The existence of scale coefficient decreases the nonlocal impact stress, deflection, and dynamical load coefficient. On the contrary, the impact velocity results in a higher nonlocal impact stress, deflection, and dynamical load coefficient. With increasing the scale coefficient, the nonlocal effect increases and the strengthening physical manifestation of nano-structural equivalent stiffness becomes even more pronounced. The results reported herein are expected to provide a useful reference for understanding the scale effect in dynamic impact that often occurs in the working process of NEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai GP, Hong JZ, Yang SX (2005) Dynamic analysis of a flexible hub-beam system with tip mass. Mech Res Commun 32(2):173–190

    Article  Google Scholar 

  2. Mao XY, Ding H, Chen LQ (2017) Vibration of flexible structures under nonlinear boundary conditions. J Appl Mech 84(11):111006

    Article  Google Scholar 

  3. Ding H, Dowell EH, Chen LQ (2018) Transmissibility of bending vibration of an elastic beam. J Vibr Acoust 140(3):031007

    Article  Google Scholar 

  4. Zhao J, Jiang JW, Jia Y, Guo W, Rabczuk T (2013) A theoretical analysis of cohesive energy between carbon nanotubes. Carbon 57:108–119

    Article  Google Scholar 

  5. Liu RM, Wang LF, Jiang JN (2016) Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics. Mater Res Exp 3(9):095601

    Article  Google Scholar 

  6. Skaug MJ, Schwemmer C, Fringes S, Rawlings CD, Knoll AW (2018) Nanofluidic rocking brownian motors. Science 359(6383):1505–1508

    Article  Google Scholar 

  7. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  Google Scholar 

  8. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  9. Li C, Lim CW, Yu JL (2011) Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater Struct 20(1):015023

    Article  Google Scholar 

  10. Şimşek M, Yurtcu HH (2013) Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378–386

    Article  Google Scholar 

  11. Li C, Guo L, Shen JP, He YP, Ju H (2013) Forced vibration analysis on nanoscale beams accounting for effective nonlocal size effects. Adv Vibr Eng 12(6):623–633

    Google Scholar 

  12. Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55–70

    Article  MathSciNet  Google Scholar 

  13. Li C (2014) A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Compos Struct 118:607–621

    Article  Google Scholar 

  14. Lim CW, Islam MZ, Zhang G (2015) A nonlocal finite element method for torsional statics and dynamics of circular nanostructures. Int J Mech Sci 94–95:232–243

    Article  Google Scholar 

  15. Lim CW, Zhang G, Reddy JN (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313

    Article  MathSciNet  Google Scholar 

  16. Li C, Yu YM, Fan XL, Li S (2015) Dynamical characteristics of axially accelerating weak visco-elastic nanoscale beams based on a modified nonlocal continuum theory. J Vibr Eng Technol 3(5):565–574

    MathSciNet  Google Scholar 

  17. Ansari R, Oskouie MF, Gholami R, Sadeghi F (2016) Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory. Compos Part B Eng 89:316–327

    Article  Google Scholar 

  18. Yu YM, Lim CW (2013) Nonlinear constitutive model for axisymmetric bending of annular graphene-like nanoplate with gradient elasticity enhancement effects. J Eng Mech 139:1025–1035

    Article  Google Scholar 

  19. Li C (2016) On vibration responses of axially travelling carbon nanotubes considering nonlocal weakening effect. J Vibr Eng Technol 4(2):175–181

    Google Scholar 

  20. Xu XJ, Zheng ML, Wang XC (2017) On vibrations of nonlocal rods: boundary conditions, exact solutions and their asymptotics. Int J Eng Sci 119:217–231

    Article  MathSciNet  Google Scholar 

  21. Zhu XW, Li L (2017) Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. Int J Mech Sci 133:639–650

    Article  Google Scholar 

  22. Yang Q, Lim CW (2012) Thermal effects on buckling of shear deformable nanocolumns with von Karman nonlinearity based on nonlocal stress theory. Nonlinear Anal Real World Appl 13:905–922

    Article  MathSciNet  Google Scholar 

  23. Lim CW (2010) On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl Math Mech English Edn 31:37–54

    Article  MathSciNet  Google Scholar 

  24. Li C, Sui SH, Chen L, Yao LQ (2018) Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale. Smart Struct Syst 21(3):279–286

    Google Scholar 

  25. Kiani K (2018) Application of nonlocal higher-order beam theory to transverse wave analysis of magnetically affected forests of single-walled carbon nanotubes. Int J Mech Sci 138:1–16

    Article  Google Scholar 

  26. Mahmoudpour E, Hosseini-Hashemi S, Faghidian SA (2018) Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl Math Model 57:302–315

    Article  MathSciNet  Google Scholar 

  27. Li HB, Wang X, Chen JB (2018) Nonlinear dynamic responses of triple-layered graphene sheets under moving particles and an external magnetic field. Int J Mech Sci 136:413–423

    Article  Google Scholar 

  28. Patra AK, Gopalakrishnan S, Ganguli R (2018) Unified nonlocal rational continuum models developed from discrete atomistic equations. Int J Mech Sci 135:176–189

    Article  Google Scholar 

  29. Li C, Lai SK, Yang X (2019) On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter. Appl Math Model 69:127–141

    Article  MathSciNet  Google Scholar 

  30. Li C (2014) Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semi-continuum model. Int J Mech Sci 82:25–31

    Article  Google Scholar 

  31. Li C, Li S, Yao LQ, Zhu ZK (2015) Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models. Appl Math Model 39:4570–4585

    Article  MathSciNet  Google Scholar 

  32. Li C, Yao LQ, Chen WQ, Li S (2015) Comments on nonlocal effects in nano-cantilever beams. Int J Eng Sci 87:47–57

    Article  Google Scholar 

  33. Shen JP, Li C (2017) A semi-continuum-based bending analysis for extreme-thin micro/nano-beams and new proposal for nonlocal differential constitution. Compos Struct 172:210–220

    Article  Google Scholar 

  34. Beer FP, Johnston ER Jr, Dewolf JT, Mazurek DF (2012) Mechanics of materials, 6th edn. McGraw-Hill, New York

    Google Scholar 

  35. Cao GX, Chen X, Kysar JW (2006) Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes. J Mech Phys Solids 54:1206–1236

    Article  Google Scholar 

  36. Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56:3379–3391

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (Grant No. MCMS-0418G01), the National Natural Science Foundation of China (Nos. 11972240, 11572210), and the Soochow Scholar Plan of Soochow University (No. R513300116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The traditional local stress can be recovered from the expression of stress of nonlocal field in Eq. (16) without the scale coefficient. Rewriting the stress of nonlocal field expression yields the following:

$$\begin{aligned} &\sigma_{\text{non}} = \frac{{6e_{0} av}}{{bh^{2} \left( {1 + e^{{2l/e_{0} a}} } \right)}}\sqrt {\frac{3EIm}{{l^{3} }}} e^{{x/e_{0} a}} \hfill \\ &\quad - \frac{{6e_{0} av}}{{bh^{2} \left( {1 + e^{{ - 2l/e_{0} a}} } \right)}}\sqrt {\frac{3EIm}{{l^{3} }}} e^{{ - x/e_{0} a}} + \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \left( {l - x} \right). \hfill \\ \end{aligned}$$
(28)

First, taking the first term into consideration yields the following:

$$\begin{aligned} &\mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{6e_{0} av}}{{bh^{2} \left( {1 + e^{{2l/e_{0} a}} } \right)}}\sqrt {\frac{3EIm}{{l^{3} }}} e^{{x/e_{0} a}} \\&\quad = \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e_{0} a}}{{\left( {1 + e^{{2l/e_{0} a}} } \right)}}e^{{x/e_{0} a}} \\ &\quad = \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e_{0} a}}{{\left( {e^{{ - x/e_{0} a}} + e^{{(2l - x)/e_{0} a}} } \right)}} \\ &\quad = \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e_{0} a}}{{\left( {e^{{ - x/e_{0} a}} + e^{{(2l - x)/e_{0} a}} } \right)}} \\ &\quad = \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{1}{{{{\left( {e^{{ - x/e_{0} a}} + e^{{(2l - x)/e_{0} a}} } \right)} \mathord{\left/ {\vphantom {{\left( {e^{{ - x/e_{0} a}} + e^{{(2l - x)/e_{0} a}} } \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} \\&\quad = \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{1}{{\frac{{e^{{ - x/e_{0} a}} }}{{e_{0} a}} + \frac{{e^{{(2l - x)/e_{0} a}} }}{{e_{0} a}}}}, \\ \end{aligned}$$
(29)

where

$$\begin{gathered} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e^{{ - x/e_{0} a}} }}{{e_{0} a}}\xrightarrow{{e_{0} a{\text{ = 1/t}}}}\mathop {\lim }\limits_{{t \to \infty }} \frac{t}{{e^{{xt}} }} = \mathop {\lim }\limits_{{t \to \infty }} \frac{1}{{xe^{{xt}} }} = 0 \hfill \\ \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e^{{(2l - x)/e_{0} a}} }}{{e_{0} a}}\begin{array}{*{20}c} {\underline{\underline{{{\text{let}}\;e_{0} a{\text{ = 1/t}}}}} } \\ {} \\ \end{array} \mathop {\lim }\limits_{{t \to \infty }} te^{{\left( {2l - x} \right)t}} = \infty \hfill \\ \end{gathered}$$
(30)

Consequently:

$$\mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e_{0} a}}{{\left( {e^{{{{ - x} \mathord{\left/ {\vphantom {{ - x} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} + e^{{{{\left( {2l - x} \right)} \mathord{\left/ {\vphantom {{\left( {2l - x} \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} } \right)}} = \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{1}{{\frac{{e^{{{{ - x} \mathord{\left/ {\vphantom {{ - x} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} }}{{e_{0} a}} + \frac{{e^{{{{\left( {2l - x} \right)} \mathord{\left/ {\vphantom {{\left( {2l - x} \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} }}{{e_{0} a}}}} = \frac{1}{0 + \infty } = 0.$$
(31)

Second, considering the second term of Eq. (28), one gets the following:

$$\begin{aligned} &\mathop {\lim }\limits_{{e_{0} a \to 0}} - \frac{{6e_{0} av}}{{bh^{2} \left( {1 + e^{{ - {{2l} \mathord{\left/ {\vphantom {{2l} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} } \right)}}\sqrt {\frac{3EIm}{{l^{3} }}} e^{{{{ - x} \mathord{\left/ {\vphantom {{ - x} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} \\&\quad= - \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e_{0} ae^{{{{ - x} \mathord{\left/ {\vphantom {{ - x} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} }}{{\left( {1 + e^{{ - {{2l} \mathord{\left/ {\vphantom {{2l} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} } \right)}} \hfill \\&\quad = - \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e_{0} a}}{{\left( {e^{{{x \mathord{\left/ {\vphantom {x {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} + e^{{{{\left( {x - 2l} \right)} \mathord{\left/ {\vphantom {{\left( {x - 2l} \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} } \right)}} \\&\quad= - \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e_{0} a}}{{\left( {e^{{{x \mathord{\left/ {\vphantom {x {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} + e^{{{{\left( {x - 2l} \right)} \mathord{\left/ {\vphantom {{\left( {x - 2l} \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} } \right)}} \hfill \\&\quad = - \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{1}{{{{\left( {e^{{{x \mathord{\left/ {\vphantom {x {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} + e^{{{{\left( {x - 2l} \right)} \mathord{\left/ {\vphantom {{\left( {x - 2l} \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} } \right)} \mathord{\left/ {\vphantom {{\left( {e^{{{x \mathord{\left/ {\vphantom {x {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} + e^{{{{\left( {x - 2l} \right)} \mathord{\left/ {\vphantom {{\left( {x - 2l} \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} } \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} \hfill \\&\quad = - \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{1}{{\frac{{e^{{{x \mathord{\left/ {\vphantom {x {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} }}{{e_{0} a}} + \frac{{e^{{{{\left( {x - 2l} \right)} \mathord{\left/ {\vphantom {{\left( {x - 2l} \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} }}{{e_{0} a}}}}, \hfill \\ \end{aligned}$$
(32)

where

$$\begin{aligned} \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e^{{{x \mathord{\left/ {\vphantom {x {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} }}{{e_{0} a}}\begin{array}{*{20}c} {\underline{\underline{{{\text{let}}\;e_{0} a{ = }{1 \mathord{\left/ {\vphantom {1 t}} \right. \kern-0pt} t}}}} } \\ {} \\ \end{array} \mathop {\lim }\limits_{t \to \infty } te^{xt} = \infty \hfill \\ \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e^{{{{\left( {x - 2l} \right)} \mathord{\left/ {\vphantom {{\left( {x - 2l} \right)} {e_{0} a}}} \right. \kern-0pt} {e_{0} a}}}} }}{{e_{0} a}}\begin{array}{*{20}c} {\underline{\underline{{{\text{let}}\;e_{0} a{ = }{1 \mathord{\left/ {\vphantom {1 t}} \right. \kern-0pt} t}}}} } \\ {} \\ \end{array} \mathop {\lim }\limits_{t \to \infty } te^{{\left( {x - 2l} \right)t}} \hfill \\ = \mathop {\lim }\limits_{t \to \infty } \frac{t}{{e^{{\left( {2l - x} \right)t}} }}\begin{array}{*{20}c} {\underline{\underline{\text{L'Hospital's rule}}} } \\ {} \\ \end{array} \mathop {\lim }\limits_{t \to \infty } \frac{1}{{\left( {2l - x} \right)e^{{\left( {2l - x} \right)t}} }} = 0. \hfill \\ \end{aligned}$$
(33)

Therefore

$$\mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{{e_{0} a}}{{\left( {e^{{x/e_{0} a}} + e^{{(x - 2l)/e_{0} a}} } \right)}} = \mathop {\lim }\limits_{{e_{0} a \to 0}} \frac{1}{{\frac{{e^{{x/e_{0} a}} }}{{e_{0} a}} + \frac{{e^{{(x - 2l)/e_{0} a}} }}{{e_{0} a}}}} = \frac{1}{\infty + 0} = 0.$$
(34)

In summary, the expression of stress of nonlocal field can degenerate into the traditional counterpart derived in this paper when \(e_{0} a \to 0\), as follows:

$$\sigma_{\text{non}} = \frac{6v}{{bh^{2} }}\sqrt {\frac{3EIm}{{l^{3} }}} \left( {l - x} \right) \, \left( {0 \le x \le l} \right).$$
(35)

Hence, the stress of nonlocal field expression in Eq. (16) is reasonable and it can be reducible to the classical stress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, N., Fan, X.L. et al. Impact Behaviors of Cantilevered Nano-beams Based on the Nonlocal Theory. J. Vib. Eng. Technol. 7, 533–542 (2019). https://doi.org/10.1007/s42417-019-00173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-019-00173-6

Keywords

Navigation