Skip to main content
Log in

Free Vibration Analysis of Graphene Platelets–Reinforced Composites Plates in Thermal Environment Based on Higher-Order Shear Deformation Plate Theory

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

As a first endeavor, this article presents the free vibration of composite plates reinforced with graphene platelets (GPLs) based on the higher-order shear deformation plate theory. Moreover, it is assumed that the material properties are temperature dependent and are graded in the thickness direction. It is assumed that GPLs randomly spread out in each individual composite layer reinforced with graphene platelets. The theoretical formulation is derived based on higher-order shear deformation plate theory and the initial thermal stresses are evaluated by solving the thermo-elastic equilibrium equations. The Halpin–Tsai micromechanical model is used to evaluate the effective material properties of every layer of composite plates reinforced GPLs. Further, the Navier solution has been used to derive the governing equations of motion and evaluate the natural frequencies and dynamic response of simply supported graphene platelet reinforced composite plates. Four different GPL distribution pattern is modeled to find out its effect on the frequency of the plate and the other parameters. The result asserted that subjoining GPL to composite plates has a significant reinforcing effect on the free vibration of Graphene platelet reinforced composite (GPLRC) plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Carbon nanotubes.

References

  1. Bellucci S, Balasubramanian C, Micciulla F, Rinaldi G (2007) CNT composites for aerospace applications. J Exp Nanosci 2(3):193–206

    Article  Google Scholar 

  2. Adam H (1997) Carbon fibre in automotive applications. Mater Des 18(4–6):349–355

    Article  Google Scholar 

  3. Gauvin F, Robert M (2015) Durability study of vinylester/silicate nanocomposites for civil engineering applications. Polym Degrad Stab 121:359–368

    Article  Google Scholar 

  4. Baradaran S, Moghaddam E, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, Nakhaei Moghaddam MR, Alias Y (2014) Mechanical properties and biomedical applications of a nanotube hydroxyapatite reduced graphene oxide composite. Carbon 69:32–45

    Article  Google Scholar 

  5. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  Google Scholar 

  6. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  7. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  Google Scholar 

  8. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495

    Article  Google Scholar 

  9. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884.26–3890.26

    Article  Google Scholar 

  10. Rafiee MA, Rafiee J, Yu Z-Z, Koratkar N (2009) Buckling resistant graphene nanocomposites. Appl Phys Lett 95(22):223103

    Article  Google Scholar 

  11. Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z-Z, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183

    Article  Google Scholar 

  12. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Article  Google Scholar 

  13. Montazeri A, Rafii-Tabar H (2011) Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys Lett A 375(45):4034–4040

    Article  Google Scholar 

  14. Mortazavi B, Benzerara O, Meyer H, Bardon J, Ahzi S (2013) Combined molecular dynamics-finite-element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon 60:356–365

    Article  Google Scholar 

  15. Wang Y, Yu J, Dai W, Song Y, Wang D, Zeng L, Jiang N (2015) Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym Compos 36(3):556–565

    Article  Google Scholar 

  16. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    Article  Google Scholar 

  17. King JA, Klimek DR, Miskioglu I, Odegard GM (2013) Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci 128(6):4217–4223

    Article  Google Scholar 

  18. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of grapheme nanocomposites: a review. Compos Sci Technol 72(12):1459–1476

    Article  Google Scholar 

  19. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  Google Scholar 

  20. Liu J, Yan H, Jiang K (2013) Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram Int 39(6):6215–6221

    Article  Google Scholar 

  21. Spanos KN, Georgantzinos SK, Anifantis NK (2015) Mechanical properties of graphene nanocomposites: a multiscale finite element prediction. Compos Struct 132:536–544

    Article  Google Scholar 

  22. Ji X-Y, Cao Y-P, Feng X-Q (2010) Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Model Simul Mater Sci 18(4):045005

    Article  Google Scholar 

  23. Shen H-S (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91(1):9–19

    Article  Google Scholar 

  24. Wu HL, Yang J, Kitipornchai S (2016) Nonlinear vibration of functionally graded carbon nanotube reinforced composite beams with geometric imperfections. Compos B Eng 90:86–96

    Article  Google Scholar 

  25. Rafiee M, Yang J, Kitipornchai S (2013) Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Comput Math Appl 66(7):1147–1160

    Article  Google Scholar 

  26. Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibrations of carbon nanotube reinforced composite beams with piezoelectric layers. Compos Struct 96:716–725

    Article  Google Scholar 

  27. Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube reinforced composite beams. Compos Struct 92(3):676–683

    Article  Google Scholar 

  28. Ke LL, Yang J, Kitipornchai S (2013) Dynamic stability of functionally graded carbon nanotube reinforced composite beams. Mech Adv Mater Struct 20(1):28–37

    Article  Google Scholar 

  29. Wu H, Kitipornchai S, Yang J (2015) Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Int J Struct Stab Dyn 15(07):1540011

    Article  MathSciNet  Google Scholar 

  30. Ansari R, Shojaei MF, Mohammadi V, Gholami R, Sadeghi F (2014) Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos Struct 113:316–327

    Article  Google Scholar 

  31. Chandra Y, Chowdhury R, Scarpa F, Adhikari S, Sienz J, Arnold C, Murmu T, Bould D (2012) Vibration frequency of graphene based composites: a multiscale approach. Mater Sci Eng B 177(3):303–310

    Article  Google Scholar 

  32. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Article  Google Scholar 

  33. Wu H, Kitipornchai S, Yang J (2017) Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater Des 132:430–441

    Article  Google Scholar 

  34. Zhang LW, Zhu P, Liew KM (2014) Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos Struct 108:472–492

    Article  Google Scholar 

  35. Zhao X, Lee YY, Liew KM (2009) Mechanical and thermal buckling analysis of functionally graded plates. Compos Struct 90(2):161–171

    Article  Google Scholar 

  36. Mohammadimehr M, Salemi M, Navi BR (2016) Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermo-mechanical loadings using DQM. Compos Struct 138:361–380

    Article  Google Scholar 

  37. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4):745–752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Appendix 1

Appendix 1

$$ \begin{aligned} T & = \int\limits_{V} {\frac{1}{2}\rho \left[ {\left ( {\frac{\partial u}{\partial t}} \right)^{2} + \left( {\frac{\partial v}{\partial t}} \right)^{2} + \left( {\frac{\partial w}{\partial t}} \right)^{2} } \right]} {\text{d}}V: \hfill \\ \delta T & = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ \begin{aligned} & \left( { - I_{0} \frac{{\partial^{2} u_{0} }}{{\partial t^{2} }} - I_{1} \frac{{\partial^{2} \phi_{x} }}{{\partial t^{2} }} + I_{3} c_{1} \left( {\frac{{\partial^{2} \phi_{x} }}{{\partial t^{2} }} + \frac{{\partial^{3} w_{0} }}{{\partial t^{2} \partial x}}} \right)} \right)\delta u_{0} \hfill \\ & + \left( { - I_{1} \frac{{\partial^{2} u_{0} }}{{\partial t^{2} }} - I_{2} \frac{{\partial^{2} \phi_{x} }}{{\partial t^{2} }} + I_{4} c_{1} \left( {\frac{{\partial^{2} \phi_{x} }}{{\partial t^{2} }} + \frac{{\partial^{3} w}}{{\partial t^{2} \partial x}}} \right)} \right)\delta \phi_{x} \hfill \\ & + \left( {c_{1} I_{3} \frac{{\partial^{2} u_{0} }}{{\partial t^{2} }} + c_{1} I_{4} \frac{{\partial^{2} \phi_{x} }}{{\partial t^{2} }} - I_{6} c_{1}^{2} \left( {\frac{{\partial^{2} \phi_{x} }}{{\partial t^{2} }} + \frac{{\partial^{3} w}}{{\partial t^{2} \partial x}}} \right)} \right)\delta \phi_{x} \hfill \\ & + \left( { - c_{1} I_{3} \frac{{\partial^{3} u_{0} }}{{\partial x\partial t^{2} }} - c_{1} I_{4} \frac{{\partial^{3} \phi_{x} }}{{\partial x\partial t^{2} }} + I_{6} c_{1}^{2} \left( {\frac{{\partial^{3} \phi_{x} }}{{\partial x\partial t^{2} }} + \frac{{\partial^{4} w}}{{\partial t^{2} \partial x^{2} }}} \right)} \right)\delta w_{0} \hfill \\ & \left( { - I_{0} \frac{{\partial^{2} v_{0} }}{{\partial t^{2} }} - I_{1} \frac{{\partial^{2} \phi_{y} }}{{\partial t^{2} }} + I_{3} c_{1} \left( {\frac{{\partial^{2} \phi_{y} }}{{\partial t^{2} }} + \frac{{\partial^{3} w_{0} }}{{\partial t^{2} \partial y}}} \right)} \right)\delta v_{0} \hfill \\ & + \left( { - I_{1} \frac{{\partial^{2} v_{0} }}{{\partial t^{2} }} - I_{2} \frac{{\partial^{2} \phi_{y} }}{{\partial t^{2} }} + I_{4} c_{1} \left( {\frac{{\partial^{2} \phi_{y} }}{{\partial t^{2} }} + \frac{{\partial^{3} w}}{{\partial t^{2} \partial y}}} \right)} \right)\delta \phi_{y} \hfill \\ & + \left( {c_{1} I_{3} \frac{{\partial^{2} v_{0} }}{{\partial t^{2} }} + c_{1} I_{4} \frac{{\partial^{2} \phi_{y} }}{{\partial t^{2} }} - I_{6} c_{1}^{2} \left( {\frac{{\partial^{2} \phi_{y} }}{{\partial t^{2} }} + \frac{{\partial^{3} w}}{{\partial t^{2} \partial y}}} \right)} \right)\delta \phi_{y} \hfill \\ & + \left( { - c_{1} I_{3} \frac{{\partial^{3} v_{0} }}{{\partial y\partial t^{2} }} - c_{1} I_{4} \frac{{\partial^{3} \phi_{y} }}{{\partial y\partial t^{2} }} + I_{6} c_{1}^{2} \left( {\frac{{\partial^{3} \phi_{y} }}{{\partial y\partial t^{2} }} + \frac{{\partial^{4} w}}{{\partial t^{2} \partial y^{2} }}} \right)} \right)\delta w_{0} \hfill \\ & + \left( { - I_{0} \frac{{\partial^{2} w_{0} }}{{\partial t^{2} }}} \right)\delta w_{0} \hfill \\ \end{aligned} \right]} } \,{\text{d}}x\,{\text{d}}y, \hfill \\ \end{aligned} $$
$$ \left\{ {I_{{_{0} }} ,I_{1} ,I_{2} ,I_{3} ,I_{4} ,I_{5} ,I_{6} } \right\} = \sum\limits_{k = 1}^{{N_{L} }} {\int\limits_{ - h/2}^{h/2} {\rho^{k} } \left\{ {1,z,z^{2} ,z^{3} ,z^{4} ,z^{5} ,z^{6} } \right\}{\text{d}}z}, $$
$$ \begin{aligned} \delta U = & \frac{1}{2}\iiint\limits_{V} {\sigma _{{ij}} \delta \varepsilon _{{ij}} {\text{d}}V} \\ = & \iint\limits_{A} {\left[ {\begin{array}{*{20}l} {N_{{xx}} \frac{{\partial \delta u_{0} }}{{\partial x}} + M_{{xx}} \frac{{\partial \delta \phi _{x} }}{{\partial x}} - P_{{xx}} c_{1} \left( {\frac{{\partial \delta \phi _{x} }}{{\partial x}} + \frac{{\partial ^{2} \delta w_{0} }}{{\partial x^{2} }}} \right)} \hfill \\ {\;\; + N_{{yy}} \frac{{\partial \delta v_{0} }}{{\partial y}} + M_{{yy}} \frac{{\partial \delta \phi _{x} }}{{\partial y}} - P_{{yy}} c_{1} \left( {\frac{{\partial \delta \phi _{y} }}{{\partial y}} + \frac{{\partial ^{2} \delta w_{0} }}{{\partial y^{2} }}} \right)} \hfill \\ {\;\; + N_{{xy}} \frac{{\partial \delta u_{0} }}{{\partial y}} + N_{{xy}} \frac{{\partial \delta v_{0} }}{{\partial x}} + M_{{xy}} \left( {\frac{{\partial \delta \phi _{x} }}{{\partial y}} + \frac{{\partial \delta \phi _{y} }}{{\partial x}}} \right) - P_{{xy}} c_{1} \left( {\frac{{\partial \delta \phi _{x} }}{{\partial y}} + \frac{{\partial \delta \phi _{y} }}{{\partial x}} + 2\frac{{\partial ^{2} \delta w_{0} }}{{\partial x\partial y}}} \right)} \hfill \\ {\;\; + (Q_{{xz}} - 3S_{{xz}} c_{1} )\left( {\delta \phi _{x} + \frac{{\partial \delta w_{0} }}{{\partial x}}} \right) + (Q_{{yz}} - 3S_{{yz}} c_{1} )\left( {\delta \phi _{y} + \frac{{\partial \delta w_{0} }}{{\partial y}}} \right)} \hfill \\ \end{array} } \right]}{\text{d}}A \\ = & \iint\limits_{A} {\left[ {\begin{array}{*{20}l} { - \frac{\partial }{{\partial x}}N_{{xx}} \delta u_{0} - \frac{\partial }{{\partial x}}M_{{xx}} \delta \phi _{x} - c_{1} \left( { - \frac{\partial }{{\partial x}}P_{{xx}} \delta \phi _{x} + \frac{{\partial ^{2} }}{{\partial x^{2} }}P_{{xx}} \delta w_{0} } \right)} \hfill \\ { - \frac{\partial }{{\partial y}}N_{{yy}} \delta v_{0} - \frac{\partial }{{\partial y}}M_{{yy}} \delta \phi _{y} - c_{1} \left( { - \frac{\partial }{{\partial y}}P_{{yy}} \delta \phi _{y} + \frac{{\partial ^{2} }}{{\partial y^{2} }}P_{{yy}} \delta w_{0} } \right)} \hfill \\ { - \frac{\partial }{{\partial y}}N_{{xy}} \delta u_{0} - \frac{\partial }{{\partial x}}N_{{xy}} \delta v_{0} - \frac{\partial }{{\partial y}}M_{{xy}} \delta \phi _{x} - \frac{\partial }{{\partial x}}M_{{xy}} \delta \phi _{y} } \hfill \\ { - c_{1} \left( { - \frac{\partial }{{\partial y}}P_{{xy}} \delta \phi _{x} - \frac{\partial }{{\partial x}}P_{{xy}} \delta \phi _{y} + 2\frac{{\partial ^{2} }}{{\partial x\partial y}}P_{{xy}} \delta w_{0} } \right)} \hfill \\ {\;\; + Q_{{xz}} \delta \phi _{x} - \frac{\partial }{{\partial x}}Q_{{xz}} \delta w_{0} - 3c_{1} \left( {S_{{xz}} \delta \phi _{x} - \frac{\partial }{{\partial x}}S_{{xz}} \delta w_{0} } \right)} \hfill \\ {\;\; + Q_{{yz}} \delta \phi _{y} - \frac{\partial }{{\partial y}}Q_{{yz}} \delta w_{0} - 3c_{1} \left( {S_{{yz}} \delta \phi _{y} - \frac{\partial }{{\partial y}}S_{{yz}} \delta w_{0} } \right)} \hfill \\ \end{array} } \right]}{\text{d}}A \\ \end{aligned}. $$
$$ \begin{aligned} \left\{ {N_{xx} ,N_{yy} ,N_{xy} } \right\} & = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int_{z} {\left\{ {\sigma_{xx}^{k} ,\sigma_{yy}^{k} ,\sigma_{xy}^{k} } \right\}} } {\text{d}}z, \hfill \\ \left\{ {M_{xx} ,M_{yy} ,M_{xy} } \right\} & = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int_{z} {\left\{ {\sigma_{xx}^{k} ,\sigma_{yy}^{k} ,\sigma_{xy}^{k} } \right\}} } z{\text{d}}z, \hfill \\ \left\{ {P_{xx} ,P_{yy} ,P_{xy} } \right\} & = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int_{z} {\left\{ {\sigma_{xx}^{k} ,\sigma_{yy}^{k} ,\sigma_{xy}^{k} } \right\}} z^{3} } {\text{d}}z, \hfill \\ \left\{ {Q_{xz} ,Q_{yz} } \right\} & = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int_{z} {\left\{ {\sigma_{xz}^{k} ,\sigma_{xy}^{k} } \right\}} } {\text{d}}z, \hfill \\ \left\{ {S_{xz} ,S_{yz} } \right\} & = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int_{z} {\left\{ {\sigma_{xz}^{k} ,\sigma_{xy}^{k} } \right\}z^{2} } } {\text{d}}z, \hfill \\ \end{aligned} $$
$$\begin{aligned} N_{xx} & = A_{11} \frac{{\partial u_{0} }}{\partial x} + B_{11} \frac{{\partial \phi_{x} }}{\partial x} - D_{11} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial x} + \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}} \right)\\& \quad + A_{12} \frac{{\partial v_{0} }}{\partial y} + B_{12} \frac{{\partial \phi_{y} }}{\partial y} - D_{12} c_{1} \left( {\frac{{\partial \phi_{y} }}{\partial y} + \frac{{\partial^{2} w_{0} }}{{\partial y^{2} }}} \right), \\ N_{yy} & = A_{22} \frac{{\partial v_{0} }}{\partial y} + B_{22} \frac{{\partial \phi_{y} }}{\partial y} - D_{22} c_{1} \left( {\frac{{\partial \phi_{y} }}{\partial y} + \frac{{\partial^{2} w_{0} }}{{\partial y^{2} }}} \right)\\& \quad + A_{12} \frac{{\partial u_{0} }}{\partial x} + B_{12} \frac{{\partial \phi_{x} }}{\partial x} - D_{12} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial x} + \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}} \right), \\ N_{xy} & = A_{44} \frac{{\partial u_{0} }}{\partial y} + A_{44} \frac{{\partial v_{0} }}{\partial x} + B_{44} \left( {\frac{{\partial \phi_{x} }}{\partial y} + \frac{{\partial \phi_{y} }}{\partial x}} \right)\\& \quad - D_{44} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial y} + \frac{{\partial \phi_{y} }}{\partial x} + 2\frac{{\partial^{2} w_{0} }}{\partial x\partial y}} \right), \\ M_{xx} & = B_{11} \frac{{\partial u_{0} }}{\partial x} + C_{11} \frac{{\partial \phi_{x} }}{\partial x} - E_{11} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial x} + \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}} \right)\\& \quad + B_{12} \frac{{\partial v_{0} }}{\partial y} + C_{12} \frac{{\partial \phi_{y} }}{\partial y} - E_{12} c_{1} \left( {\frac{{\partial \phi_{y} }}{\partial y} + \frac{{\partial^{2} w_{0} }}{{\partial y^{2} }}} \right), \\ M_{yy} & = B_{22} \frac{{\partial v_{0} }}{\partial y} + C_{22} \frac{{\partial \phi_{y} }}{\partial y} - E_{22} c_{1} \left( {\frac{{\partial \phi_{y} }}{\partial y} + \frac{{\partial^{2} w_{0} }}{{\partial y^{2} }}} \right) \\& \quad + B_{12} \frac{{\partial u_{0} }}{\partial x} + C_{12} \frac{{\partial \phi_{x} }}{\partial x} - E_{12} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial x} + \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}} \right), \\ M_{xy} & = B_{44} \frac{{\partial u_{0} }}{\partial y} + B_{44} \frac{{\partial v_{0} }}{\partial x} + C_{44} \left( {\frac{{\partial \phi_{x} }}{\partial y} + \frac{{\partial \phi_{y} }}{\partial x}} \right)\\& \quad - E_{44} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial y} + \frac{{\partial \phi_{y} }}{\partial x} + 2\frac{{\partial^{2} w_{0} }}{\partial x\partial y}} \right), \\ p_{xx} & = D_{11} \frac{{\partial u_{0} }}{\partial x} + E_{11} \frac{{\partial \phi_{x} }}{\partial x} - G_{11} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial x} + \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}} \right)\\& \quad + D_{12} \frac{{\partial v_{0} }}{\partial y} + E_{12} \frac{{\partial \phi_{y} }}{\partial y} - G_{12} c_{1} \left( {\frac{{\partial \phi_{y} }}{\partial y} + \frac{{\partial^{2} w_{0} }}{{\partial y^{2} }}} \right), \\ p_{yy} & = D_{22} \frac{{\partial v_{0} }}{\partial y} + E_{22} \frac{{\partial \phi_{y} }}{\partial y} - G_{22} c_{1} \left( {\frac{{\partial \phi_{y} }}{\partial y} + \frac{{\partial^{2} w_{0} }}{{\partial y^{2} }}} \right) \\& \quad + D_{12} \frac{{\partial u_{0} }}{\partial x} + E_{12} \frac{{\partial \phi_{x} }}{\partial x} - G_{12} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial x} + \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }}} \right), \\ p_{xy} & = D_{44} \frac{{\partial u_{0} }}{\partial y} + D_{44} \frac{{\partial v_{0} }}{\partial x} + E_{44} \left( {\frac{{\partial \phi_{x} }}{\partial y} + \frac{{\partial \phi_{y} }}{\partial x}} \right)\\& \quad - G_{44} c_{1} \left( {\frac{{\partial \phi_{x} }}{\partial y} + \frac{{\partial \phi_{y} }}{\partial x} + 2\frac{{\partial^{2} w_{0} }}{\partial x\partial y}} \right), \\ Q_{xz} & = (A_{55} - 3C_{55} c_{1} )\left( {\phi_{x} + \frac{{\partial w_{0} }}{\partial x}} \right), \\ S_{xz} & = (C_{55} - 3E_{55} c_{1} )\left( {\phi_{x} + \frac{{\partial w_{0} }}{\partial x}} \right), \\ Q_{yz} & = (A_{66} - 3C_{66} c_{1} )\left( {\phi_{y} + \frac{{\partial w_{0} }}{\partial y}} \right), \\ S_{yz} & = (C_{66} - 3E_{66} c_{1} )\left( {\phi_{y} + \frac{{\partial w_{0} }}{\partial y}} \right). \\ \end{aligned} $$
$$ \begin{aligned} &\left\{ {A_{11} ,B_{11} ,C_{11} ,D_{11} ,E_{11} ,F_{11} ,G_{11} } \right\} \\& \quad = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int\limits_{ - h/2}^{h/2} {Q_{11}^{k} \left\{ {1,z,z^{2} ,z^{3} ,z^{4} ,z^{5} ,z^{6} } \right\}} } {\text{d}}z, \hfill \\& \left\{ {A_{12} ,B_{12} ,C_{12} ,D_{12} ,E_{12} ,F_{12} ,G_{12} } \right\} \\& \quad = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int\limits_{ - h/2}^{h/2} {Q_{12}^{k} \left\{ {1,z,z^{2} ,z^{3} ,z^{4} ,z^{5} ,z^{6} } \right\}} } {\text{d}}z, \hfill \\& \left\{ {A_{22} ,B_{22} ,C_{22} ,D_{22} ,E_{22} ,F_{22} ,G_{22} } \right\} \\& \quad = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int\limits_{ - h/2}^{h/2} {Q_{22}^{k} \left\{ {1,z,z^{2} ,z^{3} ,z^{4} ,z^{5} ,z^{6} } \right\}} } {\text{d}}z, \hfill \\& \left\{ {A_{55} ,B_{55} ,C_{55} ,D_{55} ,E_{55} } \right\}\\& \quad = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int\limits_{ - h/2}^{h/2} {Q_{55}^{k} \left\{ {1,z,z^{2} ,z^{3} ,z^{4} } \right\}} } {\text{d}}z, \hfill \\ &\left\{ {A_{66} ,B_{66} ,C_{66} ,D_{66} ,E_{66} } \right\}\\& \quad = \sum\limits_{k = 1}^{{N_{\text{L}} }} {\int\limits_{ - h/2}^{h/2} {Q_{66}^{k} \left\{ {1,z,z^{2} ,z^{3} ,z^{4} } \right\}} } {\text{d}}z. \hfill \\\end{aligned}$$
$$ \delta W_{1} = \iint\limits_{A} {\left[ {N_{1}^{T} \frac{\partial w}{\partial x}\frac{\partial \delta w}{\partial x} + N_{2}^{T} \frac{\partial w}{\partial y}\frac{\partial \delta w}{\partial y}} \right]}\,{\text{d}}x{\text{d}}y, $$
$$ N_{1}^{\text{T}} = N_{2}^{\text{T}} = \int_{ - h/2}^{h/2} {E\,\alpha (T - T_{0} ){\text{d}}z}. $$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaderi, S., Ebrahimi, F. & Mahesh, V. Free Vibration Analysis of Graphene Platelets–Reinforced Composites Plates in Thermal Environment Based on Higher-Order Shear Deformation Plate Theory. Int. J. Aeronaut. Space Sci. 20, 902–912 (2019). https://doi.org/10.1007/s42405-019-00184-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-019-00184-3

Keywords

Navigation