Skip to main content

Advertisement

Log in

An Update on Corneal Imaging Techniques: from Macroscale to Nanostructure

  • Imaging
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

The structural integrity of the cornea and transparency are critical for normal vision. Corneal evaluation in ophthalmology and clinical research requires fast and user-friendly techniques allowing accurate diagnoses and follow-up of pathologies, injuries or surgery. Macroscopic irregularities in the anterior corneal surface are the main cause of irregular refractive vision problems. The microscopic and nanoscopic irregularities within the three-dimensional architecture of cornea are the cause of loss of optical transparency and scattering. In this review, the state of the art of the different corneal imaging techniques with three-dimensional capabilities will be detailed and discussed according to the descriptive level of analysis: macroscopic, microscopic and nanoscopic scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ayres BD, Rapuano CJ. Refractive power of the cornea. Compr Ophthalmol Updat. 2006;7(5):253–5.

    Google Scholar 

  2. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1999-2020: a systemic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–34.

    PubMed  Google Scholar 

  3. Davidson AE, Hayes S, Hardcastle AJ, et al. The pathogenesis of keratoconus. Eye (Lond). 2014;28(2):189–95.

    CAS  Google Scholar 

  4. Lakhundi S, Siddiqui R, Khan NA. Pathogenesis of microbial keratitis. Microb Pathog. 2017;104:97–109.

    CAS  PubMed  Google Scholar 

  5. Vrecek I, Choudhury E, Durairaj V. Herpes zoster ophthalmicus: a review for the internist. Am J Med. 2017;130(1):21–6.

    Google Scholar 

  6. Vedana G, Villarreal G, Jun AS. Fuchs endothelial corneal dystrophy: current perspectives. Clin Ophthalmol. 2016;18(10):321–30.

    Google Scholar 

  7. Singh P, Tyagi M, Kumar Y, Gupta KK, Sharma PD. Ocular chemical injuries and their management. Oman J Ophthalmol. 2013;6(2):83–6.

    PubMed  PubMed Central  Google Scholar 

  8. Osapoetra LO, Watson DM, McAleavey SA. Intraocular pressure-dependent corneal elasticity measurement using high-frequency ultrasound. Ultrason Imaging. 2019;41(5):251–70.

    PubMed  Google Scholar 

  9. Damgaard IB, Reffat M, Hjortdal J. Review of corneal biomechanics properties following LASIK and SMILE for myopia and myopic astigmatism. Open Ophthalmol J. 2018;12(Suppl-1, M5):164–74.

    PubMed  PubMed Central  Google Scholar 

  10. Tavakoli M, Malik R. Corneal confocal microscopy: a novel non-invasive technique to quantity small fibre pathology in perpheral neuropathies. J Vis Exp. 2011;47:2194.

    Google Scholar 

  11. Han M, Zickler L, Giese G, Walter M, Loesel FH, Bille JF. Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation. J Biomed Opt. 2004;9(4):760–6.

    PubMed  Google Scholar 

  12. Martin R. Cornea and anterior eye assesstment with slit lamp biomicroscopy, specular microscopy, confocal microscopy and ultrasound biomicroscopy. Indian J Ophthalmol. 2018;66(2):195–201.

    PubMed  PubMed Central  Google Scholar 

  13. Braaf B, Dubbelman M, van der Heijde RG, et al. Performance in specular reflection and slit-imaging corneal topography. Optom Vis Sci. 2009;86(5):467–75.

    PubMed  Google Scholar 

  14. Reinstein DZ, Archer TJ, Gobbe M, et al. Repeatability of layered corneal pachymetry with the Artemis very high-frequency digital ultrasound arc-scanner. J Refract Surg. 2010;26:646–59.

    PubMed  PubMed Central  Google Scholar 

  15. Reinstein DZ, Gobbe M, Archer TJ. Anterior segment biometry: a study and review of resolution and repeatability data. J Refract Surg. 2012;28:509–20.

    PubMed  Google Scholar 

  16. Cheng A, Rao AK, Lau S, et al. Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia. J Refract Surg. 2008;24:361–5.

    PubMed  Google Scholar 

  17. Marelli A, de Vita IR, Cozza F, Tavazzi S. Criticality of the measurement of corneal thickness in specular reflection by digital biomicroscope. Cont Lens Anterior Eye. 2018;41(6):531–7.

    PubMed  Google Scholar 

  18. Cankaya AB, Tekin K, Kiziltoprak H, Karahan S, Yilmazbas P. Assessment of corneal backward light scattering in the healthy cornea and factors affecting corneal transparency. Jpn J Ophthalmol. 2018;62(3):335–41.

    PubMed  Google Scholar 

  19. Sardak DK, Yust BG, Barrera FJ, et al. Optical absorption and scattering of bovine cornea, lens and retina in the visible region. Lasers Med Sci. 2009;24(6):839–47.

    Google Scholar 

  20. Dulku S, Smith HB, Antcliff RJ. Keratometry obtained by corneal mapping versus the IOLMaster in the prediction of postoperative refraction in routine cataract surgery. Clin Exp Ophthalmol. 2013;41(1):12–8.

    PubMed  Google Scholar 

  21. Wolffshon JS. Keratometry -a technique that should be relegated to the clinical dark ages? Cont Lens Anterior Eye. 2017;40(6):357–9.

    Google Scholar 

  22. Wartz T, Marten L, Wang M. Measuring the cornea: the latest developments in corneal topography. Curr Opin Ophthalmol. 2007;18:325–33.

    Google Scholar 

  23. Cairns G, McGhee CN. Orbscan computerized topography: attributes, applications, and limitations. J Cataract Refract Surg. 2005;31:205–20.

    PubMed  Google Scholar 

  24. Rio-Cristobal A, Martin R. Corneal assessment technologies: current status. Surv Ophthalmol. 2014;59(6):599–614.

    PubMed  Google Scholar 

  25. Shi Y. Strategies for improving the early diagnosis of keratoconus. Clin Optom (Auckl). 2016;8:13–‘.

    Google Scholar 

  26. Drews RC. Depth of field in slit image photography. An optical solution using the Scheimpflug principle. Ophthalmologica. 1964;148:143–50.

    CAS  PubMed  Google Scholar 

  27. Jain R, Grewal S. Pentacam: principle and clinical applications. Curr J Glaucoma Pract. 2009;3:20–32.

    Google Scholar 

  28. Miller D, Greiner JV. Corneal measurements and tests. In: Albert DM, Jakobiec FA, editors. Principles and practice of ophthalmology: Clinical practice. 1st ed. Philadelphia: W.B. Saunders Company; 1994. p. 4–13.

    Google Scholar 

  29. Lopes BT, Ramos IC, Dawson DG, et al. Dectection of ectatic corneal diseases based on pentacam. Z Med Phys. 2016;26(2):136–42.

    PubMed  Google Scholar 

  30. Lazaridis A, Giallouros E, Sekundo W, et al. Spatial analysis of corneal densitometry, thickness profile, and volume distribution after uneventful Descemet membrane endothelial keratoplasty. Cornea. 2019;38(10):1215–21.

    PubMed  Google Scholar 

  31. Dong J, Zhang Y, Zhou J, et al. Comparison of corneal power and corneal astigmatism of different diameter zones centered on the pupil and corneal apex using Scheimpflug tomography. Cornea. 2019:39(1):77–83.

    PubMed  Google Scholar 

  32. Setty R, Agrawal A, Deshmukh R, et al. Effect of post crosslinking haze on the repeatability of Scheimpflug-based and slit-scanning imaging devices. Indian J Ophthalmol. 2017;65(4):305–10.

    Google Scholar 

  33. Huang G, Gonzalez E, Peng PH, et al. Anterior chamber depth, iridodocorneal angle witdh, and intraocular pressure changes after phacoemulsification: narrow vs open iridocorneal angles. Arch Opthalmol. 2001;129(10):1283–90.

    Google Scholar 

  34. Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Exp Ophthalmol. 2009;37(1):81–9.

    PubMed  Google Scholar 

  35. Wang J, Abou Shousha M, Perez VL, et al. Ultra-high resolution optical coherence tomography for imaging the anterior segment of the eye. Ophthalmic Surg Lasers Imaging. 2011;42(4):S15–27.

    PubMed  Google Scholar 

  36. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Murti RK, Haji S, Sambhav K, et al. Clinical applications of spectral domain optical coherence tomography in retinal diseases. Biom J. 2016;39(2):107–20.

    Google Scholar 

  38. Bhende M, Shetty S, Kuppuswamy M, et al. Optical coherence tomography: a guide to interpretation of commun macular diseases. Indian J Ophthalmol. 2018;66(1):20–35.

    PubMed  PubMed Central  Google Scholar 

  39. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    PubMed  Google Scholar 

  40. Vita L, Digerkus S, Marion R, et al. Optical coherence tomopography angiography (OCTA) as a new diagnostic tool in uveitis. J Ophthalmic Inflamm Infect. 2019;9:10.

    Google Scholar 

  41. Grulkowski I, Manzanera S, Cwiklinski L, et al. Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography. Biom Opt Express. 2018;9(8):3821–33.

    Google Scholar 

  42. de Castro A, Benito A, Manzanera S, et al. Three-dimensional cataracts crystalline lens imaging with swept-source optical coherence tomography. Invest Ophthalmic Vis Sci. 2018;59(2):897–903.

    Google Scholar 

  43. Pantalon A, Pfister M, dos Santos VA, et al. Ultrahigh-resolution anterior segment optical coherence tomography for analysis of corneal microarchitecture during wound healing. Acta Ophthalmol. 2019;97(5):761–71.

    Google Scholar 

  44. Izatt A, Hee MR, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–9.

    CAS  PubMed  Google Scholar 

  45. Yasuno Y, Madjarova VD, Makita S, Akiba M, Morosawa A, Chong C, et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt Express. 2005;13(26):10652–64.

    PubMed  Google Scholar 

  46. Werkmeister RM, Sapeta S, Schmidl D, Garhöfer G, Schmidinger G, Aranha Dos Santos V, et al. Ultrahigh-resolution OCT imaging of the human cornea. Biomed Opt Express. 2017;8(2):1221–39.

    PubMed  PubMed Central  Google Scholar 

  47. Grulkowski I, Liu JJ, Baumann B, et al. Imaging limbal and scleral vasculature using Swept Source Optical Coherence Tomography. Photonics Lett Pol. 2011;3(4):132–4.

    PubMed  PubMed Central  Google Scholar 

  48. Christopoulos V, Kagemann L, Wollstein G, Ishikawa H, Gabriele ML, Wojtkowski M, et al. In vivo corneal high-speed, ultra high-resolution optical coherence tomography. Arch Ophthalmol. 2007;125(8):1027–35.

    PubMed  PubMed Central  Google Scholar 

  49. Yadav R, Lee KS, Rolland JP, Zavislan JM, Aquavella JV, Yoon G. Micrometer axial resolution OCT for corneal imaging. Biomed Opt Express. 2011;2(11):3037–46.

    PubMed  PubMed Central  Google Scholar 

  50. Kagemann L, Wollstein G, Ishikawa H, Nadler Z, Sigal IA, Folio LS, et al. Visualization of the conventional outflow pathway in the living human eye. Ophthalmology. 2012;119(8):1563–8.

    PubMed  Google Scholar 

  51. Kagemann L, Wollstein G, Ishikawa H, et al. Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(8):4054–9.

    PubMed  PubMed Central  Google Scholar 

  52. Grieve K, Ghoubay D, Georgeon C, Thouvenin O, Bouheraoua N, Paques M, et al. Three-dimensional structure of the mammalian limbal stem cell niche. Exp Eye Res. 2015;140:75–84.

    CAS  PubMed  Google Scholar 

  53. Li Y, Tan O, Brass R, Weiss JL, Huang D. Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes. Ophthalmology. 2012;119(12):2425–33.

    PubMed  Google Scholar 

  54. Yadav R, Kottaiyan R, Ahmad K, et al. Epithelium and Bowman’s layer thickness and light scatter in keratoconic cornea evaluated using ultrahigh resolution optical coherence tomography. J Biomed Opt. 2012;17(11):116010.

    PubMed  PubMed Central  Google Scholar 

  55. Kaluzny BJ, Szkulmowska A, Szkulmowski M, et al. Fuchs’ endothelial dystrophy in 830-nm spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2009;40(2):198–200.

    PubMed  Google Scholar 

  56. Shousha MA, Perez VL, Wang J, Ide T, Jiao S, Chen Q, et al. Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy. Ophthalmology. 2010;117(6):1220–7.

    PubMed  Google Scholar 

  57. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10:128–38.

    Google Scholar 

  58. Masters BR, Böhnke M. Three-dimensional confocal microscopy of the human cornea in vivo. Ophthalmic Res. 2001;33:125–35.

    CAS  PubMed  Google Scholar 

  59. Jalbert I, Stapleton F, Papas E, et al. In vivo confocal microscopy of the human cornea. Br J Ophthalmol. 2003;87:225–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jester JV, Cavanagh HD, Lemp MA. Confocal microscopic imaging of the living eye with tandem scanning confocal microscopy. In: Masters BR, editor. Noninvasive diagnostic techniques in ophthalmology. New York: Springer-Verlag; 1990. p. 172–88.

    Google Scholar 

  61. Ruggeri A, Pajaro S. Automatic recognition of cell layers in corneal confocal microscopy images. Comput Methods Prog Biomed. 2002;68:25–35.

    Google Scholar 

  62. Tavaloki M, Hossain P, Malik RA. Clinical applications of corneal confocal microscopy. Clin Ophthalmol. 2008;2(2):435–45.

    Google Scholar 

  63. Cavanagh HD, Petroll WM, Alizadeh HH, et al. Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease. Ophthalmology. 1996;100:1444–54.

    Google Scholar 

  64. Auran JD, Starr MB, Koester CJ, LaBombardi V. In vivo scanning slit confocal microscopy of Acanthamoeba keratitis: a case report. Cornea. 1994;13:183–5.

    CAS  PubMed  Google Scholar 

  65. Böhnke M, Masters BR. Confocal microscopy of the cornea. Prog Retin Eye Res. 1999;18:553–628.

    PubMed  Google Scholar 

  66. Avunduk AM, Senft CJ, Emerah S, et al. Corneal healing after uncomplicated LASIK and its relationship to refractive changes: a six-month prospective confocal study. Invest Ophthalmol Vis Sci. 2004;45:1334–9.

    PubMed  Google Scholar 

  67. Gemignani F, Ferrari G, Vitteta F, et al. Non-lenght-dependent small fibre neuropathy. Confocal microscopy study of the corneal innervation. J Neurol Neurosurg Psychiatry. 2010;81(7):731–3.

    CAS  PubMed  Google Scholar 

  68. Tavaloki M, Malik RA. Corneal confocal microscopy: a novel non-invasive technique to quantify small fibre pathology in peripheral neutopathies. J Vis Exp. 2011;47:2194.

    Google Scholar 

  69. Tavaloki M, Petropoulos IN, Malik RA. Corneal confocal microscopy to assess diabetic neuropathy: an eye on the foot. J Diabetes Sci Technol. 2013;7(5):1179–89.

    Google Scholar 

  70. Ustine A, Piston D. A simple introduction to multiphoton microscopy. J Microsc. 2011;243:221–6.

    Google Scholar 

  71. Reed DA, Yotsuya M, Gubareva P, et al. Two-photon fluorescence and second harmonic generation characterization of extracellular matrix remodeling in post-injury murine temporomandibular joint osteoarthritis. PLoS One. 2019;14(3):e0214072.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Batista A, Breunig HG, König A, Schindele A, Hager T, Seitz B, et al. Assessment of human corneas prior to transplantation using high-resolution two-photon imaging. Invest Ophthalmol Vis Sci. 2018;59:176–84.

    CAS  PubMed  Google Scholar 

  73. Park CY, Lee JK, Chuck RS. Second harmonic generation imaging analysis of corneal arrangement in human cornea. Invest Ophthalmol Vis Sci. 2015;56(9):5622–9.

    PubMed  PubMed Central  Google Scholar 

  74. Park CY, Lee JK, Zhang C, Chuck RS. New details of the human corneal limbus revealed with second harmonic generation imaging. Invest Ophthalmol Vis Sci. 2015;56(10):6058–66.

    PubMed  PubMed Central  Google Scholar 

  75. Jay L, Bourget JM, Goyer B, et al. Characterization of tissue-engineered posterior corneas using second-and third-harmonic generation microscopy. PLoS One. 2015;10(4):e0125564.

    PubMed  PubMed Central  Google Scholar 

  76. Morishige N, Shin-gyou-uchi R, Azumi H, et al. Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy. Invest Ophthalmol Vis Sci. 2014;55:8377–85.

    PubMed  Google Scholar 

  77. Avila F, Bueno J, Artal P. Quantitative discrimination of healthy and diseased corneas with second harmonic generation microscopy. Tras Vis Sci Tech. 2019;8(51):2164–591.

    Google Scholar 

  78. Avila F, Gambín A, Bueno J, Artal P. In vivo two-photon microscopy of the human eye. Sci Rep. 2019;9(10121):2054–322.

    Google Scholar 

  79. Gomes JT, Hage CH, Bardet SM, et al. Fiber-based 920 nm femtosecond laser for two-photon microscopy. Opt Lett. 2019;43(20):5098–101.

    Google Scholar 

  80. Avila F, del Barco O, Bueno J. Quantifying external and internal collagen organization from stokes-vector-based second harmonic generation imaging polarimetry. J Opt. 2017;19:105301.

    Google Scholar 

  81. Meek KM, Boot C. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog Retin Eye Res. 2009;28:369–92.

    CAS  PubMed  Google Scholar 

  82. Radner W, Mallinger R. Interlacing of collagen lamellae in the midstroma of the human cornea. Cornea. 2002;21:598–601.

    PubMed  Google Scholar 

  83. Boote C, Dennis S, Newton RH, et al. Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci. 2004;44:2941–8.

    Google Scholar 

  84. Meek KM, Leonard DW. Ultrastructure of the corneal stroma: a comparative study. Biophys J. 1993;64:273–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015;49:1–16.

    PubMed  PubMed Central  Google Scholar 

  86. Meek KM. Corneal collagen – its role in maintaining corneal shape and transparency. Biophys Rev. 2009;1:83–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Steere L, Russell L. Electron microscopy of structural detail in frozen biological specimens. J Biophys Biochem Cytol. 1957;3(1):45–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Erni R, Rossell MD, Kisielowski C, et al. Atomic-Resolution Imaging with a Sub-50-pm Electron Probe. Phys Rev Lett. 2009;102(9):096101.

    PubMed  Google Scholar 

  89. McTigue JW. The human cornea: a light and electron microscopy study of the normal cornea and its alterations in various dystrophies. Tr Am Ophth Soc. 1967;65:591–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Abahussin M, Hayes S, Edelhauser H, et al. A microscopy study of the structural features of post-LASIK human corneas. PLoS One. 2013;8(5):e63268.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Salapaka S, Salapaka M. Scanning probe microscopy. IEEE Control Syst Mag. 2008;28(2):65–83.

    Google Scholar 

  92. Meller D, Peters K, Meller K. Human cornea and sclera studied by atomic force microscopy. Cell Tissue Res. 1997;288:111–8.

    CAS  PubMed  Google Scholar 

  93. Lombardo M, Lombardo G, Carbone G, de Santo MP, Barberi R, Serrao S. Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy. Invest Ophthalmol Vis Sci. 2012;53:1050–7.

    PubMed  Google Scholar 

  94. Parpura V, Haydon PG, Henderson E. Three-dimensional imaging of living neurons and glia with the atomic force mi-croscope. J Cell Sci. 1993;104:427–32.

    PubMed  Google Scholar 

  95. Bell JS, Haves S, Whitford C, et al. The hierarchical response of human corneal collagen to load. Acta Biomater. 2017;65:216–25.

    PubMed  Google Scholar 

  96. Luz A. Corneal biomechanics: where are we? J Curr Ophthalmol. 2016;28(3):97–8.

    PubMed  PubMed Central  Google Scholar 

  97. Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol. 2007;91:551–7.

    PubMed  PubMed Central  Google Scholar 

  98. McLaren JW, Wacker K, Kane KM, et al. Measuring corneal haze by using Scheimpflug photography and confocal microscopy. Invest Ophthalmol Vis Sci. 2016;57(1):227–35.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Oscar del Barco for his support in reviewing the manuscript.

Funding

The authors gratefully acknowledge research support from the Spanish Ministry of Economy and Competitiveness (Grant DPI2017-84047-R) and the Department of Industry and Innovation (Government of Aragon) through the research group Grant E44-17R (cofinanciando con Feder 2014-2020: Construyendo Europa desde Aragón).

Author information

Authors and Affiliations

Authors

Contributions

FA wrote the manuscript. JA, MVC, MCM and LR reviewed and contributed in the organization of the imaging techniques according to the hierarchical level.

Corresponding author

Correspondence to Francisco J. Ávila.

Ethics declarations

Ethics and Approval and Consent to Participate

Not applicable.

Consent of Publication

Not applicable.

Availability of Data and Materials

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila, F.J., Ares, J., Collados, M.V. et al. An Update on Corneal Imaging Techniques: from Macroscale to Nanostructure. SN Compr. Clin. Med. 2, 1–10 (2020). https://doi.org/10.1007/s42399-019-00207-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-019-00207-w

Keywords

Navigation