Skip to main content
Log in

Negative Temperature Coefficient Resistance of CaTiO3 for Thermistor Application

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Present research presents CaTiO3 as an important negative temperature coefficient resistance (NTCR) thermistor material. Two routes were adopted such as solid state reaction and high energy ball milling (HEBM) for comparative analysis. X-ray diffraction (XRD), and Steinhart–Hart equation used for characterization of material formation and thermistor property. XRD pattern shows single phase orthorhombic symmetry or both samples. Electrical resistance found by LCR meter shows about NTCR behaviour and Steinhart–Hart model provides information for its suitability towards thermistor industry. To know the faster response nature time domain analysis performed on both samples. To the best knowledge, there are not much data available on properties of CaTiO3 as thermistor based temperature sensor material, which lead this research work. Enhanced sensing behaviour observed in CaTiO3 processed through HEBM. Both the samples signifies their strong potential in thermistor industry with sensitivity in the range of 4000–6700 K with exponential electrical resistance change in the specified temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Tiabi-Benziada, A. Mezroua, R. Von Der Muhll, CaTiO3 related materials for resonators. Ceramics Silikáty 48(4), 180–184 (2004)

    Google Scholar 

  2. C. Carter, M. Norton, Ceramic Materials: Science and Engineering (Springer, New York, 2007)

    Google Scholar 

  3. A. Moulson, A. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (Wiley, New York, 2003)

    Book  Google Scholar 

  4. G. Kelly, J. Alderman, C. Lyden, J. Barrett, Mi-crosystem packaging: lessons from conventional low cost IC packaging. J. Micromech. Microeng. 7, 99–103 (1997)

    Article  Google Scholar 

  5. G. Gralik, A.E. Thomsen, C.A. Moraes, F. Raupp-Pereira, Processing and characterization of CaTiO3 perovskite ceramics. Process. Appl. Ceram. 8(2), 53–57 (2014)

    Article  CAS  Google Scholar 

  6. R.F. Gonçalves, N.L.V. Carreno, M.T. Escote, K.P. Lopes, A. Valentini, E.R. Leite, E. Longo, M.A. Machado, Fotoluminescência e adsorção de CO2 em nanopartículas de CaTiO3 dopadas com lan-tânio. Quím. Nova 27, 862–864 (2004)

    Article  Google Scholar 

  7. G. Mi, Y. Murakami, D. Shindo, F. Saito, Microstructural investigation of CaTiO3 Formedmechano chemically by grinding of a CaO–TiO2 mixture. Powder Technol. 104(1), 75–78 (1999)

    Article  CAS  Google Scholar 

  8. A. Feteira, Negative temperature coefficient resis-tance (NTCR) ceramic thermistors: an industrial per- spective. J. Am. Ceram. Soc. 92(5), 967–983 (2009)

    Article  CAS  Google Scholar 

  9. P.S. Anjana, T. Sherin, M.T. Sebastian, J. Jame, Synthetic minerals for electronic applications. Earth Sci. India I(I), 43–45 (2008)

    Google Scholar 

  10. L.B. Kong, W. Zhu, O.K. Tan, Preparation and characterization of Pb(Zr0.52Ti0.48)O3 ceramics from high-energy ball milling powders. Mater. Lett. 42, 232–236 (2000)

    Article  CAS  Google Scholar 

  11. R.M. German, Sintering Theory and Practice (Wiley, New York, 1996)

    Google Scholar 

  12. J. Wang, J.M. Xue, D.M. Wan et al., Mechanically activating nucleation and growth of complex perovskites. J. Solid State Chem. 154, 321–328 (2000)

    Article  CAS  Google Scholar 

  13. J.R.R. Siqueira, A.Z. Simões, B.D. Stojanovic et al., Influence of milling time on mechanically assisted synthesis of Pb0.91Ca0.1TiO3 powders. Ceram. Int. 33, 937–941 (2007)

    Article  CAS  Google Scholar 

  14. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, Ferroelectric phase transition in Pb0.92Gd0.08(Zr0.53Ti0.47)0.98O3. J. Appl. Phys. 94, 6091 (2003)

    Article  CAS  Google Scholar 

  15. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  16. A. Abreu Jr., S.M. Zanetti, M.A.S. Oliveira, G.P. Thim, Effect of ureaon lead zirconate titanate—Pb(Zr0.52Ti0.48)O3—nanopowders synthesized by the Pechini method. J. Eur. Ceram. Soc. 25, 743–750 (2005)

    Article  CAS  Google Scholar 

  17. C.C. Koch, C. Suryanarayana, Nanocrystalline materials, in Microstructure and Properties of Materials. vol. 2(6), ed. by C. Suryanarayana (World Scientific Publishing Corp., Singapore, 2000), pp. 359–403

    Chapter  Google Scholar 

  18. C. Suryanarayana (ed.), Mechanical alloying, in ASM Handbook, (Powder Metal Technologies and Applications), vol. 7, ed. by C. Suryanarayana (ASM International, Materials Park, 1998), pp. 80–90

  19. C. Suryanarayana, C.C. Koch, Nanostructured materials, in Non-Equilibrium Processing of Materials, ed. by C. Suryanarayana (Elsevier Science Pub., Oxford, 1999), pp. 313–346

  20. E. Ma, M. Atzmon, Phase transformation induced by mechanical alloying in binary systems. Mater. Chem. Phys. 39, 249–267 (1995)

    Article  CAS  Google Scholar 

  21. S. Morrell, Y.T. Man, Using modeling and simulation for the design of full scale ball mill circuits. Miner. Eng. 10, 1311–1327 (1997)

    Article  CAS  Google Scholar 

  22. A. Misra, J. Cheung, Particle motion and energy distribution in tumbling ball mills. Powder Technol. 105, 222–227 (1999)

    Article  CAS  Google Scholar 

  23. E. Gaffet, M. Abdellaoui, N. Malhouroux-Gaffet, Formation of nanostructural material induced by mechanical processing. Mater. Trans. JIM 36, 198–209 (1995)

    Article  CAS  Google Scholar 

  24. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, Nanoscale structure-property relations in Sm modified lead zirconate titanate. J. Nanosci. Nanotechnol. 9, 3106–3111 (2009)

    Article  CAS  Google Scholar 

  25. C. Suryanarayana, M.G. Norton, X-ray Diffraction: A Practical Approach (Plenum Press, New York, 1998)

    Book  Google Scholar 

  26. B. Lonnberg, Characterization of milled Si3N4 powder using Xray peak broadening and surface area analysis. J. Mater. Sci. 29, 3224–3236 (1994)

    Article  Google Scholar 

  27. L. Aymard, A. Dehahaye-Vidal, F. Portemer, F. Disma, Study of the formation reactions of silver-palladium alloys by grinding and post-milling isothermal annealing. J. Alloys Compd. 238, 116–127 (1996)

    Article  CAS  Google Scholar 

  28. J.R. Macdonald, Impedance spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  29. M.L. Moreira et al., Structural and optical properties of CaTiO3 perovskite based materials obtained by microwave assisted hydrothermal synthesis: an experimental and theoretical insight. Acta Materialia 57, 5174–5185 (2009)

    Article  CAS  Google Scholar 

  30. M.S. Khalil, F.F. Hammad, Influence of Cu addition on the structure and dielectric properties of CaTiO3. Egypt J. Solids 25, 175–181 (2002)

    Google Scholar 

  31. S. Palaniandy, N.H. Jamil, Influence of milling conditions on the mechanochemical synthesis of CaTiO3 nanoparticles. J. Alloys Compd. 476, 894–902 (2009)

    Article  CAS  Google Scholar 

  32. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J. Adv. Ceram. 2, 291–300 (2013)

    Article  CAS  Google Scholar 

  33. J. Zhao, L. Li, Z. Gui, Influence of lithium modification on the properties of Y doped Sr0.5Pb0.5TiO3 thermistors. Sens. Actuators A 95, 46–50 (2001)

    Article  CAS  Google Scholar 

  34. C.L Yuan, X.Y. Liu, J.W. Xu, X.W. Zhang and C.R. Zhou, Electrical properties of lead free thick film NTC thermistors based on BaFe0.9Sn0.1O3 ceramic, in International conference on Intelligent computing and integrated systems (IEEE, 2010), pp. 445–448

  35. K.A. Stella, K. Krishnankutty, K. R. Dayas, A. Seema, Effect of Bi2O3 as sintering aid in modifying the NTC characteristics of MnCr2O4 compositions for temperature sensors, in Physics and technology of sensors (ISPTS), (IEEE, 2012), pp. 301–304

  36. NTC thermistor design guide for discrete components & probes, Quality thermistor.Inc, USA

  37. BetaTHERM Sensors Temperature solutions, NTC Thermistor theory, Finland

  38. I. Brunets, O. Mrooz, O. Shpotyuk, H. Altenburg, Thick film NTC thermistors based on spinel type semiconducting electroceramics, in 24th International conference on microelectronics, Serbia, (IEEE, 2004), pp. 503–506

  39. G.M. Gouda, C.L. Nagendra, A new transition metal oxide sensor material for thermistor applications: Manganese-vanadium-oxide, in 1st International symposium on physics and technology of sensors. (IEEE, 2012), pp. 125–128

  40. C.H. McMurtry, W.T. Terrell, W.T. Benecki, A Tin oxide thermistor for temperature sensing to 1800 °F. IEEE Trans. Ind. Gener. Appl. 2, 461–464 (1966)

    Article  Google Scholar 

  41. C.L. Yuan, X.Y. Liu, J.W. Xu, X.W. Zhang, C.R. Zhou, Electrical properties of SrxBa1−xFe0.6Sn0.4O3−ε NTC thermistor. Bull. Mater. Sci. 35, 425–431 (2012)

    Article  CAS  Google Scholar 

  42. K. Park, D.Y. Bang, J.G. Kim, J.Y. Kim, C.H. Lee, B.H. Choi, Influence of the composition and the sintering temperature on the Electrical resistivities of Ni-Mn-Co-(Fe) oxide NTC thermistors. Journal of the Korean physical society. 41, 251–256 (2002)

    CAS  Google Scholar 

  43. E.A. de Vasconcelos, S.A. Khan, W.Y. Zahang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high purity polycrystalline cubic silicon carbide. Sens. Actuators A 83, 167–171 (2000)

    Article  Google Scholar 

  44. C. Yuan, X. Liu, M. Liang, C. Zhou, H. Wang, Electrical properties of Sr–Bi–Mn–Fe–O thick film NTC thermistors prepared by screen printing. Sens. Actuators A 167, 291–296 (2011)

    Article  CAS  Google Scholar 

  45. Z.P. Nenova, T.G. Nenova, Linearrization circuit of the thermistor connection. IEEE Trans. Instrum. Meas. 58, 441–449 (2009)

    Article  Google Scholar 

  46. R.N. Jadhav, S.N. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38, 5181–5188 (2012)

    Article  CAS  Google Scholar 

  47. C.C. Wang, S.A. Akbar, W. Chen, J.R. Schorr, High temperature thermistors based on yitria and calcium zirconate. Sens. Actuator A 58, 237–243 (1997)

    Article  CAS  Google Scholar 

  48. T. Nagai, M. Itoh, SiC thin film thermistor. IEEE Trans. Ind. Appl. 26, 1139–1143 (1990)

    Article  CAS  Google Scholar 

  49. O. Aleksic, B. Radojcic, R. Ramovic, Electrode effect on NTC planar thermistor volume resistivity, in 25th International conference on microelectronics, balgrade, Serbia, (IEEE, 2006), pp. 580–583

  50. YUKUTO NTC Thermistor, JOYIN, Taiwan

  51. P. Padmini, N.S. Hari, T.R.N. Kutty, Cryogenic sensors from semiconducting barium titanate ceramics with strong negative temperature coefficient of resistance. Sens. Actuators A. 50, 39–44 (1995)

    Article  CAS  Google Scholar 

  52. NTC thermistors, KEYSTONE thermometrics corporation, USA

  53. S. Jagtap, S. Rana, U. Mulik, D. Amalanekar, Thick film NTC thermistor for wide range of temperature sensing. Microelectron. Int. 24, 7–13 (2007)

    Article  CAS  Google Scholar 

  54. Intoduction to NTCs:NTC Thermistor, Philips Components, California

  55. S.G.E. Wissmar, M. Kolahdouz, Y. Yamamoto, B. Tillack, C. Vieder, J.Y. Andersson, H.H. Radamsson, Monocrystalline SiGe for high performance uncooled thermistor, in Semiconductor device research symposium, (IEEE, 2007), pp.1–2

  56. W.L. Brogan, Modern control theory (Pearson Education, London, 1974)

    Google Scholar 

  57. I.J. Nagrath, Control System Engineering (New Age International, New Delhi, 2006)

    Google Scholar 

  58. N.S. Norman, Control System Engineering (Wiley, NewYork, 2004)

    Google Scholar 

  59. K. Ogata, Modern Control Engineering (Prentice Hall, Upper Saddle River, 2010)

    Google Scholar 

  60. E.D. Boalt, Real time temperature control of oven using Matlab-Simulink, in Proceeding of the 11th WSEAS international conference on systems, Aglos Nikolaos, Crete Island, (2007), pp. 424–429

  61. N.T.C. Thermistors, General Technical Information (EPCOS, Munich, 2009)

    Google Scholar 

  62. Thermistors in Single Supply Temperature Sensing Circuits. Microchip Technology Inc., 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhanarayan Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S. Negative Temperature Coefficient Resistance of CaTiO3 for Thermistor Application. Trans. Electr. Electron. Mater. 21, 91–98 (2020). https://doi.org/10.1007/s42341-019-00159-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00159-x

Keywords

Navigation