Skip to main content
Log in

RETRACTED ARTICLE: Performance of Natural Dyes in Dye-Sensitized Solar Cell as Photosensitizer

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

This article was retracted on 28 December 2023

This article has been updated

Abstract

In this research work five types of titanium dioxide (TiO2) nanocrystalline sol–gel paste with three different types of dye have been prepared and layered on Indium Tin-Oxide coated glass to fabricate dye-sensitized solar cells. The dyes extracted from Malabar spinach seeds (MSS), Red spinach and Pomegranate burgs were used as photosensitizer. All the electrical properties investigated by LCR meter were found to be improved with MSS dye but sample with 0.3 M HNO3 (sample-3) exhibited the best electrical properties. The current–voltage characteristics for all the samples showed ideal behavior. The highest maximum power of 176.3 μW and efficiency of 9.23% was found for sample-3 with MSS dye. The smallest crystallite size was found to be 28.82 nm for sample-3 by XRD data which was also supported by the SEM results. Thus, this study reveals that MSS dye has the great potential to be used as photosensitizer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. M. Gratzel, Photovoltaic and photoelectrochemical conversion of solar energy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 993–1005 (2007). https://doi.org/10.1098/rsta.2006.1963

    Article  CAS  Google Scholar 

  2. S. Arul, R. ArunKumar, Synthesis and characterization of CuIn0.7Ga0.3Se2 (CIGS) bulk compound and hot wall deposited thin film absorber layer for solar cell applications. Rasayan J. Chem. 9, 278–286 (2016)

    CAS  Google Scholar 

  3. V.G. Shah, D.B. Wallace, Low-cost solar cell fabrication by drop-on-demand ink-jet printing, in Proceeding IMAPS 37th Annual International Symposium on Microelectronics, pp. 1–6 (2004)

  4. S.K. Das, J.M.M. Islam, M. Hasan, H. Kabir, Development of electrically conductive nanocrystalline thin film for optoelectronic applications. Int. Lett. Chem. Phys. Astron. 10, 90–101 (2013). https://doi.org/10.18052/www.scipress.com/ILCPA.15.90

    Article  Google Scholar 

  5. C. Zhu, M.J. Panzer, Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications. ACS Appl. Mater. Interfaces 7, 5624–5628 (2015). https://doi.org/10.1021/acsami.5b00643

    Article  CAS  Google Scholar 

  6. B. O’Regan, M. Gratzel, A. Low-Cost, High-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  7. R. Keshner, M.S. Arya, in Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules (2004). https://www.nrel.gov/docs/fy05osti/36846.pdf

  8. P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E.V. Stoyanov, S.M. Zakeeruddin, M. Grätzel, Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc. 127, 6850–6856 (2005). https://doi.org/10.1021/ja042232u

    Article  CAS  Google Scholar 

  9. M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607

    Article  Google Scholar 

  10. S.A. Haque, E. Palomares, H.M. Upadhyaya, L. Otley, R.J. Potter, A.B. Holmes, J.R. Durrant, Flexible dye sensitised nanocrystalline semiconductor solar cells. Chem. Commun. (2003). https://doi.org/10.1039/b308529e

    Article  Google Scholar 

  11. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998). https://doi.org/10.1038/26936

    Article  CAS  Google Scholar 

  12. B. O’Regan, D.T. Schwartz, Solid state photoelectrochemical cells based on dye sensitization, in AIP Conference Proceedings, ed. by R.D. McConnell (AIP, Denver, 1997), pp. 129–136. https://doi.org/10.1063/1.53472

    Chapter  Google Scholar 

  13. V.P.S. Perera, P. Pitigala, P.V.V. Jayaweera, K.M.P. Bandaranayake, K. Tennakone, Dye-sensitized solid-state photovoltaic cells based on dye multilayer-semiconductor nanostructures. J. Phys. Chem. B 107, 13758–13761 (2003). https://doi.org/10.1021/jp0348979

    Article  CAS  Google Scholar 

  14. D. Wei, Dye sensitized solar cells. Int. J. Mol. Sci. 11, 1103–1113 (2010). https://doi.org/10.3390/ijms11031103

    Article  CAS  Google Scholar 

  15. Y.-H. Chen, C.-H. Chen, S.-Y. Wu, C.-H. Chen, M.-Y. Hsu, K.-C. Chen, J.-L. He, S. Ito, Y. Chergui, N. Nehaoua, D.E. Mekki, Z. Chen, Q. Tian, M. Tang, J. Hu, S. Ameen, M.S. Akhtar, Y.S. Kim, H.-S. Shin, Y. Jiao, F. Zhang, S. Meng, N. Stem, E.F. Chinaglia, S.G. dos S. Filho, K.E. Jasim, M. Adachi, K. Yoshida, T. Kurata, J. Adachi, K. Tsuchiya, Y. Mori, F. Uchida, M.-R. Kim, S.-H. Park, J.-U. Kim, J.-K. Lee, Y. Kim, D. Lee, H.-G. Yun, B.-S. Bae, Y. Jun, M.G. Kang, L. Dominici, D. Colonna, D. D’Ercole, G. Mincuzzi, R. Riccitelli, F. Michelotti, T. M. Brown, A. Reale, A. Di Carlo, X.-D. Gao, C.-L. Wang, X.-Y. Gan, X.-M. Li, K.-C. Lin, C.-L. Chang, M.J. Griffith, A.J. Mozer, W.A. Vallejo L., C.A. Quiñones S., J.A. Hernandez S., M. Chigane, M. Watanabe, T. Shinagawa, A.P. Uthirakumar, Q. Qiao, E. Stathatos, in Solar Cells—Dye-Sensitized Devices (2011). https://doi.org/10.5772/1757

  16. Y. Jiao, F. Zhang, S. Meng, Dye sensitized solar cells principles and new design, in Solar Cells Dye Devices (2011). https://doi.org/10.5772/21393

  17. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995). https://doi.org/10.1038/376498a0

    Article  CAS  Google Scholar 

  18. P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126–128 (2001). https://doi.org/10.1063/1.1384001

    Article  CAS  Google Scholar 

  19. C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, Organic Photovoltaics: Concepts and Realization (Springer, Berlin, 2003). https://doi.org/10.1007/978-3-662-05187-0

    Book  Google Scholar 

  20. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 80, 2425–2427 (2002). https://doi.org/10.1126/science.1069156

    Article  Google Scholar 

  21. S. Ito, N.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. (Camb.) (2006). https://doi.org/10.1039/b608279c

    Article  Google Scholar 

  22. Y. Wang, C. Zhao, D. Qin, M. Wu, W. Liu, T. Ma, Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells. J. Mater. Chem. 22, 22155 (2012). https://doi.org/10.1039/c2jm35348b

    Article  CAS  Google Scholar 

  23. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010). https://doi.org/10.1021/cr900356p

    Article  CAS  Google Scholar 

  24. S.G. Hashmi, M. Özkan, J. Halme, S.M. Zakeeruddin, J. Paltakari, M. Grätzel, P.D. Lund, Dye-sensitized solar cells with inkjet-printed dyes. Energy Environ. Sci. 9, 2453–2462 (2016). https://doi.org/10.1039/c6ee00826g

    Article  CAS  Google Scholar 

  25. J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sustain. Energy Rev. 68, 234–246 (2017). https://doi.org/10.1016/j.rser.2016.09.097

    Article  CAS  Google Scholar 

  26. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18, 155–162 (2015). https://doi.org/10.1016/j.mattod.2014.09.001

    Article  CAS  Google Scholar 

  27. T. Oku, N. Kakuta, K. Kobayashi, A. Suzuki, K. Kikuchi, Fabrication and characterization of TiO2-based dye-sensitized solar cells. Prog. Nat. Sci. Mater. Int. 21, 122–126 (2011). https://doi.org/10.1016/S1002-0071(12)60045-8

    Article  Google Scholar 

  28. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45, 638–640 (2006). https://doi.org/10.1143/jjap.45.l638

    Article  Google Scholar 

  29. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014). https://doi.org/10.1038/nchem.1861

    Article  CAS  Google Scholar 

  30. G. Richhariya, A. Kumar, P. Tekasakul, B. Gupta, Natural dyes for dye sensitized solar cell: a review. Renew. Sustain. Energy Rev. 69, 705–718 (2017). https://doi.org/10.1016/j.rser.2016.11.198

    Article  CAS  Google Scholar 

  31. Y. Amao, T. Komori, Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosens. Bioelectron. 19, 843–847 (2004). https://doi.org/10.1016/j.bios.2003.08.003

    Article  CAS  Google Scholar 

  32. K. Tennakone, G.R.R.A. Kumara, A.R. Kumarasinghe, P.M. Sirimanne, K.G.U. Wijayantha, Efficient photosensitization of nanocrystalline TiO2 films by tannins and related phenolic substances. J. Photochem. Photobiol. A Chem. 94, 217–220 (1996). https://doi.org/10.1016/1010-6030(95)04222-9

    Article  CAS  Google Scholar 

  33. S.C. Hao, J.H. Wu, Y.F. Huang, J.M. Lin, Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80, 209–214 (2006). https://doi.org/10.1016/j.solener.2005.05.009

    Article  CAS  Google Scholar 

  34. A.S. Polo, N.Y. MurakamiIha, Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol. Energy Mater. Sol. Cells 90, 1936–1944 (2006). https://doi.org/10.1016/j.solmat.2006.02.006

    Article  CAS  Google Scholar 

  35. C.G. Garcia, A. SartoPolo, N.Y. MurakamiIha, Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. J. Photochem. Photobiol. A Chem. 160, 87–91 (2003). https://doi.org/10.1016/s1010-6030(03)00225-9

    Article  CAS  Google Scholar 

  36. G.P. Smestad, Education and solar conversion: demonstrating electron transfer. Sol. Energy Mater. Sol. Cells 55, 157–178 (1998). https://doi.org/10.1016/S0927-0248(98)00056-7

    Article  CAS  Google Scholar 

  37. G.R.A. Kumara, S. Kaneko, M. Okuya, B. Onwona-Agyeman, A. Konno, K. Tennakone, Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells 90, 1220–1226 (2006). https://doi.org/10.1016/j.solmat.2005.07.007

    Article  CAS  Google Scholar 

  38. N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J. Phys. Chem. B. 101, 9342–9351 (1997). https://doi.org/10.1021/jp972197w

    Article  CAS  Google Scholar 

  39. M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 4, 145–153 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1

    Article  CAS  Google Scholar 

  40. M. Ryan, Progress in ruthenium complexes for dye sensitised solar cells. Platin. Met. Rev. 53, 216–218 (2009). https://doi.org/10.1595/147106709X475315

    Article  CAS  Google Scholar 

  41. K. Maabong, C.M. Muiva, P. Monowe, S.T. Sathiaraj, M. Hopkins, L. Nguyen, K. Malungwa, M. Thobega, Natural pigments as photosensitizers for dye-sensitized solar cells with TiO2 thin films. Int. J. Renew. Energy Res. 5, 54–60 (2015)

    Google Scholar 

  42. H.J. Kim, Y.T. Bin, S.N. Karthick, K. V. Hemalatha, C.J. Raj, S. Venkatesan, S. Park, G. Vijayakumar, Natural dye extracted from rhododendron species flowers as a photosensitizer in dye sensitized solar cell. Int. J. Electrochem. Sci. 8, 6734–6743 (2013). http://www.electrochemsci.org/papers/vol8/80506734.pdf

  43. K.H. Park, T.Y. Kim, J.Y. Park, E.M. Jin, S.H. Yim, J.G. Fisher, J.W. Lee, Photochemical properties of dye-sensitized solar cell using mixed natural dyes extracted from Gardenia Jasminoide Ellis. J. Electroanal. Chem. 689, 21–25 (2013). https://doi.org/10.1016/j.jelechem.2012.11.026

    Article  CAS  Google Scholar 

  44. C.S. Juana Pinanjota, A. Rodríguez, Energy conversion efficiency of genipin-based dye sensitized solar cells, in AIP Conference Proceedings, AIP Publishing (2018), p. 020012. https://doi.org/10.1063/1.5050364

  45. K.H. Park, T.Y. Kim, S. Han, H.S. Ko, S.H. Lee, Y.M. Song, J.H. Kim, J.W. Lee, Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 868–873 (2014). https://doi.org/10.1016/j.saa.2014.03.016

    Article  CAS  Google Scholar 

  46. Y. Li, S.H. Ku, S.M. Chen, M.A. Ali, F.M.A. AlHemaid, Photoelectrochemistry for red cabbage extract as natural dye to develop a dye-sensitized solar cells, Int. J. Electrochem. Sci. 8, 1237–1245 (2013). http://www.electrochemsci.org/papers/vol8/80101237.pdf

  47. V. Shanmugam, S. Manoharan, S. Anandan, R. Murugan, Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 35–40 (2013). https://doi.org/10.1016/j.saa.2012.11.098

    Article  CAS  Google Scholar 

  48. H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo, Y.J. Lo, Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. J. Alloys Compd. 495, 606–610 (2010). https://doi.org/10.1016/j.jallcom.2009.10.057

    Article  CAS  Google Scholar 

  49. N.M. Gómez-Ortíz, I.A. Vázquez-Maldonado, A.R. Pérez-Espadas, G.J. Mena-Rejón, J.A. Azamar-Barrios, G. Oskam, Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol. Energy Mater. Sol. Cells 94, 40–44 (2010). https://doi.org/10.1016/j.solmat.2009.05.013

    Article  CAS  Google Scholar 

  50. S.A. Agarkar, R.R. Kulkarni, V.V. Dhas, A.A. Chinchansure, P. Hazra, S.P. Joshi, Isobutrin from Butea Monosperma (flame of the forest): a promising new natural sensitizer belonging to chalcone class. ACS Appl. Mater. Interfaces 3, 2440–2444 (2011). https://doi.org/10.1021/am200341y

    Article  CAS  Google Scholar 

  51. I.C. Maurya, P. Srivastava, L. Bahadur, Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer. Opt. Mater. (Amst.) 52, 150–156 (2016). https://doi.org/10.1016/j.optmat.2015.12.016

    Article  CAS  Google Scholar 

  52. R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, Y.M. Irwan, Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC), in: Y. Gagnon, S.O. Jompob Waewsak Thong, A.K. Sangkharak (eds.), Energy Procedia, Elsevier Ltd., Bangkok, pp. 896–902 (2015). https://doi.org/10.1016/j.egypro.2015.11.584

  53. D. Ganta, J. Jara, R. Villanueva, Dye-sensitized solar cells using Aloe Vera and Cladode of Cactus extracts as natural sensitizers. Chem. Phys. Lett. 679, 97–101 (2017). https://doi.org/10.1016/j.cplett.2017.04.094

    Article  CAS  Google Scholar 

  54. M. Hamadanian, J. Safaei-Ghomi, M. Hosseinpour, R. Masoomi, V. Jabbari, Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Mater. Sci. Semicond. Process. 27, 733–739 (2014). https://doi.org/10.1016/j.mssp.2014.08.017

    Article  CAS  Google Scholar 

  55. R. Ramanarayanan, P. Nijisha, C.V. Niveditha, S. Sindhu, Natural dyes from red amaranth leaves as light-harvesting pigments for dye-sensitized solar cells. Mater. Res. Bull. 90, 156–161 (2017). https://doi.org/10.1016/j.materresbull.2017.02.037

    Article  CAS  Google Scholar 

  56. D.D. Pratiwi, F. Nurosyid Kusumandari, A. Supriyanto, R. Suryana, Performance improvement of dye-sensitized solar cells (DSSC) by using dyes mixture from chlorophyll and anthocyanin, in Journal of Physics: Conference Series, IOP, Surakarta, Indonesia p. 012012 (2017). https://doi.org/10.1088/1742-6596/909/1/012025

  57. M.K. Hossain, M.F. Pervez, M.N.H. Mia, A.A. Mortuza, M.S. Rahaman, M.R. Karim, J.M.M. Islam, F. Ahmed, M.A. Khan, Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells. Results Phys. 7, 1516–1523 (2017). https://doi.org/10.1016/j.rinp.2017.04.011

    Article  Google Scholar 

  58. Keithley, in Application Note Number 2876: Making I–V and C–V Measurements on Solar/Photovoltaic Cells Using the Model 4200-SCS Semiconductor Characterization System (2007)

  59. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Co., Reading, 1978)

    Google Scholar 

  60. S. Glasstone, Textbook of physical chemistry. J. Am. Chem. Soc. 69, 189–190 (1947). https://doi.org/10.1021/ja01193a052

    Article  Google Scholar 

  61. H. Sutrisno, Polymorphic transformation and microstructure characterization of TiO2 phases prepared by the calcination of hydrogen titanates nanoribbons, J. Sains Dasar. 1, 12–32 (2012). http://staffnew.uny.ac.id/upload/132011628/penelitian/18-32+Tranform+TiO2.pdf

  62. H. Sutrisno Sunarto, Synthesis of TiO2-polycrystalline microspheres and its microstructure at various high temperatures. J. Ceram. Process. Res. 18, 378–384 (2017)

    Google Scholar 

  63. M. BenYahia, F. Lemoigno, T. Beuvier, J.Ś. Filhol, M. Richard-Plouet, L. Brohan, M.L. Doublet, Updated references for the structural, electronic, and vibrational properties of TiO2 (B) bulk using first-principles density functional theory calculations. J. Chem. Phys. 130, 204501 (2009). https://doi.org/10.1063/1.3130674

    Article  CAS  Google Scholar 

  64. B. Huber, A. Brodyanski, M. Scheib, A. Orendorz, C. Ziegler, H. Gnaser, Nanocrystalline anatase TiO2 thin films: preparation and crystallite size-dependent properties. Thin Solid Films 472, 114–124 (2005). https://doi.org/10.1016/j.tsf.2004.06.120

    Article  CAS  Google Scholar 

  65. H. Choi, E. Stathatos, D.D. Dionysiou, Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol-gel method modified with nonionic surfactants. Thin Solid Films 510, 107–114 (2006). https://doi.org/10.1016/j.tsf.2005.12.217

    Article  CAS  Google Scholar 

  66. S. DeWolf, A. Descoeudres, Z.C. Holman, C. Ballif, High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012). https://doi.org/10.1515/green-2011-0018

    Article  CAS  Google Scholar 

  67. K.L. Ray, Photovoltaic Cell Efficiency at Elevated Temperatures (Massachusetts Institute of Technology, Cambridge, 2010)

    Google Scholar 

  68. L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Silicon solar cells: toward the efficiency limits. Adv. Phys. (2019). https://doi.org/10.1080/23746149.2018.1548305

    Article  Google Scholar 

  69. F. Kabir, M.M.H. Bhuiyan, M.R. Hossain, H. Bashar, M.S. Rahaman, M.S. Manir, S.M. Ullah, S.S. Uddin, M.Z.I. Mollah, R.A. Khan, S. Huque, M.A. Khan, Improvement of efficiency of dye sensitized solar cells by optimizing the combination ratio of natural red and yellow dyes. Optik (Stuttg) 179, 252–258 (2019). https://doi.org/10.1016/j.ijleo.2018.10.150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujan Kumar Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s42341-023-00505-0

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Ganguli, S., Kabir, H. et al. RETRACTED ARTICLE: Performance of Natural Dyes in Dye-Sensitized Solar Cell as Photosensitizer. Trans. Electr. Electron. Mater. 21, 105–116 (2020). https://doi.org/10.1007/s42341-019-00158-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00158-y

Keywords

Navigation