Skip to main content

Advertisement

Log in

Math Self-efficacy and the Likelihood of Pursuing a STEM-Based Career: a Gender-Based Analysis

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

The attitudes teenagers have towards Math, as well as their knowledge of Science, Technology, Engineering and Math (STEM)–based careers will affect their likelihood of pursing these careers in the future. The purpose of this study was to examine the attitudes that youth (girls and boys) aged 12–14 hold towards Math, their knowledge of Math, and Science requirements for future careers as well as their likelihood of choosing a STEM-based career. This research also examined the responses of girls who attended a week-long intensive Science summer camp compared with those who did not attend this camp. To do this, students’ attitudes and knowledge were explored using a gender-based analysis (GBA) in four sample groups: (1) public school boys, (2) public school girls, (3) public school girls who do well in math, and (4) a specialized sample of girls who had attended a female-only Science summer camp. Our results show that more grade 7 girls in Nova Scotian public schools feel tense doing Math problems compared with similarly aged boys, yet the average self-rating of getting good marks, learning Math quickly, and looking forward to Math were similar for girls and boys. Furthermore, girls had a better knowledge of careers that required Math and/or Science than boys. In relation to the Science camp, significantly more girls attending the Science camp indicated that they would be very likely to pursue a STEM career in the future, compared with girls, with equally good Math grades, in the non-camps group. These findings show that enabling girls to interact with female STEM professionals and to attend an all-girls Science dedicated camp significantly impacts their interest in STEM professions and is a concrete way in to break down stereotypes in male-dominated fields.

Résumé

Les attitudes des adolescents envers les mathématiques, ainsi que leurs connaissances des carrières dans les sciences, la technologie, l'ingénierie et les mathématiques (STEM) influeront sur la probabilité qu’ils entreprennent une carrière dans ces domaines dans l'avenir. Le but de cette étude était d'examiner les attitudes des jeunes (filles et garçons) âgés de 12 à 14 ans à l'égard des mathématiques, leur connaissance des exigences en mathématiques et en sciences pour de futures carrières, ainsi que la probabilité qu’ils choisissent une carrière dans les STEM. Cette étude a également examiné les réponses des filles ayant participé à un camp d'été scientifique intensif d'une semaine comparativement à celles qui n'ayant pas participé à ce camp. Pour ce faire, les attitudes et les connaissances des élèves ont été étudiées à l'aide d'une analyse comparative entre les sexes (ACS) dans quatre échantillons : 1) garçons des écoles publiques, 2) filles des écoles publiques, 3) filles des écoles publiques qui réussissent bien en mathématiques et 4) un échantillon spécialisé de filles ayant participé à un camp d'été scientifique réservé aux filles. Nos résultats indiquent que davantage de filles de septième année dans les écoles publiques de la Nouvelle-Écosse se sentent tendues lorsqu'elles font des problèmes de mathématiques comparativement aux garçons d'âge similaire. Cependant, l'auto-évaluation moyenne pour obtenir de bonnes notes, apprendre les mathématiques rapidement et avoir hâte de faire des mathématiques était similaire pour les filles et les garçons. De plus, les filles avaient une meilleure connaissance que les garçons des carrières exigeant les mathématiques, les sciences, ou les deux à la fois. Par ailleurs, beaucoup plus de filles ayant participé au camp scientifique ont indiqué qu'elles seraient très susceptibles de faire carrière dans les STEM dans l'avenir comparativement aux filles du groupe n'y ayant pas participé dont les notes en mathématiques étaient aussi bonnes. Ces résultats indiquent que le fait de permettre aux filles d'interagir avec des femmes professionnelles des STEM et de participer à un camp scientifique réservé aux filles a un effet important sur leur intérêt pour les professions en STEM et constitue un moyen concret de briser les stéréotypes dans les domaines dominés par les hommes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agard, E. (2017). Help shape the future of STEM education in Canada. Canada 2067. Retrieved from https://canada2067.ca/en/articles/help-shape-the-future-of-stem-education-in-canada/. Accessed Dec 2019.

  • Ball, C., Huang, K. T., Cotten, S. R., & Rikard, R. V. (2017). Pressurizing the STEM pipeline: An expectancy-value theory analysis of youths’ STEM attitudes. Journal of Science Education and Technology, 26(4), 372–382.

    Article  Google Scholar 

  • Blotnicky, K. A., Franz-Odendaal, T., French, F., & Joy, P. (2018). A study of the correlation between STEM career knowledge, mathematics self-efficacy, career interests, and career activities on the likelihood of pursuing a STEM career among middle school students. International Journal of STEM Education, 5(1), 22.

  • Bandura, A. (1986). Self-regulatory mechanisms. In E. Cliffs (Ed.), Social foundations of thought and action: A social cognitive theory (pp. 335–389). NJ: Prentice Hall.

    Google Scholar 

  • Capobianco, B. M., Diefes-dux, H. A., Mena, I., & Weller, J. (2011). What is an engineer? Implications of elementary school student conceptions for engineering education. Journal of Engineering Education, 100(2), 304–328.

    Article  Google Scholar 

  • Chachashvili-Bolotin, S., Lissitsa, S., & Milner-Bolotin, M. (2019). STEM outcomes of second-generation immigrant students with high-skilled parental backgrounds. International Journal of Science Education, 41(17), 2465–2483. https://doi.org/10.1080/09500693.2019.1686549

  • Compeau, S. (2016). The calling of an engineer: High school students’ perceptions of engineering (Dissertation). Queen’s University, Kingston, Ontario, Canada

    Google Scholar 

  • Conner, L. D. C., & Danielson, J. (2016). Scientist role models in the classroom: how important is gender matching?. International Journal of Science Education, 38(15), 2414–2430.

    Article  Google Scholar 

  • Creamer, E. G., & Laughlin, A. (2005). Self-authorship and women’s career decision making. Journal of College Student Development, 46(1), 13–27.

    Article  Google Scholar 

  • Crozier, S. D. (1999). Women’s career development in a “relational context”. International Journal for the Advancement of Counselling, 21(3), 231–247.

    Article  Google Scholar 

  • Cutumisu, M., & Bulut, O. (2017). Problem-solving attitudes and gender as predictors of academic achievement in mathematics and science for Canadian and Finnish students in the PISA 2012 Assessment. In EdMedia+ Innovate Learning (pp. 728-738). Association for the Advancement of Computing in Education (AACE).

  • Dabney, K. P., Tai, R. H., Almarode, J. T., Miller-Friedmann, J. L., Sonnert, G., Sadler, P. M., & Hazari, Z. (2012). Out-of-school time science activities and their association with career interest in STEM. International Journal of Science Education, Part B, 2(1), 63–79.

    Article  Google Scholar 

  • Damaske, S. (2011). For the family? How class and gender shape women’s work. New York: Oxford University Press.

    Google Scholar 

  • Dardenne, B., Dumont, M., & Bollier, T. (2007). Insidious dangers of benevolent sexism: Consequences for women’s performance. Journal of Personality and Social Psychology, 93(5), 764–779.

    Article  Google Scholar 

  • Dasgupta, N., & Stout, J. G. (2014). Girls and women in science, technology, engineering, and mathematics: STEMing the tide and broadening participation in STEM careers. Policy Insights from the Behavioral and Brain Sciences, 1(1), 21–29. https://doi.org/10.1177/2372732214549471

    Article  Google Scholar 

  • Davies, P. G., Spencer, S. J., Quinn, D. M., & Gerhardstein, R. (2002). Consuming images: How television commercials that elicit stereotype threat can restrain women academically and professionally. Personality and Social Psychology Bulletin, 28(12), 1615–1628.

    Article  Google Scholar 

  • DeCoito, I. (2016). STEM education in Canada: A knowledge synthesis. Canadian Journal of Science, Mathematics and Technology Education, 16(2), 114–128.

    Article  Google Scholar 

  • Eccles, J. S. (1994). Understanding women’s educational and occupational choices: Applying the Eccles et al. model of achievement-related choices. Psychology of Women Quarterly, 18(4), 585–609.

    Article  Google Scholar 

  • Eccles, J. S., & Wang, M.-T. (2016). What motivates females and males to pursue careers in mathematics and science? International Journal of Behavioral Development, 40(2), 100–106. https://doi.org/10.1177/0165025415616201

    Article  Google Scholar 

  • Engineers Canada. (2017). 30 by 30. Retrieved from https://engineerscanada.ca/diversity/women-in-engineering/30-by-30

  • Fouad, N. A., & Smith, P. L. (1996). A test of a social cognitive model for middle school students: Math and science. Journal of Counseling Psychology, 43(3), 338.

    Article  Google Scholar 

  • Fralick, B., Kearn, J., Thompson, S., & Lyons, J. (2009). How middle schoolers draw engineers and scientists. Journal of Science Education and Technology, 18(1), 60–73.

    Article  Google Scholar 

  • Franz-Odendaal, T. A., Blotnicky, K., French, F., & Joy, P. (2016). Experiences and perceptions of STEM subjects, careers, and engagement in STEM activities among middle school students in the maritime provinces. Canadian Journal of Science, Mathematics and Technology Education, 16(2), 153–168.

  • Frome, P. M., Alfeld, C. J., Eccles, J. S., & Barber, B. L. (2006). Why don’t they want a male-dominated job? An investigation of young women who changed their occupational aspirations. Educational Research and Evaluation, 12(4), 359–372.

    Article  Google Scholar 

  • Heilbronner, N. N. (2009). Pathways in STEM: Factors affecting the retention and attrition of talented men and women from the STEM pipeline. University of Connecticut.

  • Jaremus, F., Gore, J., Fray, L., & Prieto-Rodriguez, E. (2019). Senior secondary student participation in STEM: Beyond national statistics. Mathematics Education Research Journal, 31(2), 151–173.

    Article  Google Scholar 

  • Lee, D. G., & Lim, H. (2019). The effects of career education using female scientists role models on elementary students’ perceptions of science related career [abstract]. Journal of Korean Elementary Science Education, 38(4), 510–521.

  • Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45(1), 79–122.

    Article  Google Scholar 

  • Lent, R. W., Brown, S. D., & Hackett, G. (2000). Contextual supports and barriers to career choice: A social cognitive analysis. Journal of Counseling Psychology, 47(1), 36.

    Article  Google Scholar 

  • Lent, R.W., Brown, S. D., & Hackett, G. (2002). Career development from a social cognitive perspective. In D. Brown & L. Brook (Eds.), Career choice and development (pp. 373–422). San Francisco, CA: Jossey Bass.

    Google Scholar 

  • Madill, H. M., Ciccocioppo, A. L., Stewin, L. L., Armour, M. A., & Montgomerie, T. C. (2004). The potential to develop a career in science: Young women’s issues and their implications for careers guidance initiatives. International Journal for the Advancement of Counselling, 26(1), 1–19.

    Article  Google Scholar 

  • Maltese, A. V. & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95(5), 877–907.

  • Mangu, D. M., Lee, A. R., Middleton, J. A., & Nelson, J. K. (2015). Motivational factors predicting STEM and engineering career intentions for high school students. In Frontiers in Education Conference (FIE), 2015. 32614 2015. IEEE (pp. 1–8). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7344065

  • Masnick, A., Valenti, S., Cox, B., & Osman, C. (2010). A multidimensional scaling analysis of students’ attitudes about science careers. International Journal of Science Education, 32(5), 653–667.

    Article  Google Scholar 

  • Modi, K., Schoenberg, J., & Salmond, K. (2012). Generation STEM: What girls say about science, technology, engineering, and math. A Report from the Girl Scout Research Institute. New York, NY: Girl Scouts of the USA.

    Google Scholar 

  • Murphy, C., & Beggs, J. (2003). Children’s perceptions of school science. School Science Review, 84, 109–116.

    Google Scholar 

  • Murphy, S., MacDonald, A., Wang, C. A., & Danaia, L. (2019). Towards an understanding of STEM engagement: A review of the literature on motivation and academic emotions. Canadian Journal of Science, Mathematics and Technology Education, 19(3), 304–320.

    Article  Google Scholar 

  • Nguyen, H. H. D., & Ryan, A. M. (2008). Does stereotype threat affect test performance of minorities and women? A meta-analysis of experimental evidence. Journal of Applied Psychology, 93(6), 1314.

    Article  Google Scholar 

  • Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C., & Nelson, C. (2015). A model of factors contributing to STEM learning and career orientation. International Journal of Science Education, 37(7), 1067–1088.

    Article  Google Scholar 

  • Palmer, T. A., Burke, P. F., & Aubusson, P. (2017). Why school students choose and reject science: a study of the factors that students consider when selecting subjects. International Journal of Science Education, 39(6), 645–662.

    Article  Google Scholar 

  • Quimby, J.L. & De Santis, A.M. (2011). The influence of role models on women’s career choice. The Career Development Quarterly, 54(4), 297–306.

  • Sahin, A., Ayar, M. C., & Adiguzel, T. (2014). STEM related after-school program activities and associated outcomes on student learning educational sciences. Educational Sciences: Theory and Practice, 14(1), 309–322.

    Google Scholar 

  • Schumacher, M. M., Stansbury, K. N., Johnson, M. N., Floyd, S. R., Reid, C. E., Noland, M. P., & Leukefeld, C. G. (2009). The young women in science program: a five-year follow-up of an intervention to change science attitudes, academic behavior, and career aspirations. Journal of Women and Minorities in Science and Engineering, 15(4), 303–321.

    Article  Google Scholar 

  • Schuster, C., & Martiny, S. E. (2017). Not feeling good in STEM: Effects of stereotype activation and anticipated affect on women’s career aspirations. Sex Roles, 76(1-2), 40–55.

    Article  Google Scholar 

  • Sekaquaptewa, D., & Thompson, M. (2003). Solo status, stereotype threat, and performance expectancies: Their effects on women’s performance. Journal of Experimental Social Psychology, 39(1), 68–74.

    Article  Google Scholar 

  • Schuster C., Martiny SE, and Schmader T. (2015). Distracted by the unthought – suppression and reappraisal of mind wandering under stereotype threat. PlosOne 10(3), e0122207, https://doi.org/10.1371/journal.pone.0122207

    Article  Google Scholar 

  • Sinkele, C. N., & Mupinga, D. M. (2011). The effectiveness of engineering workshops in attracting females into engineering fields: A review of the literature. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 84(1), 37–42.

    Article  Google Scholar 

  • Sjaastad, J. (2012). Sources of inspiration: The role of significant persons in young people’s choice of science in higher education. International Journal of Science Education, 34(10), 1615–1636.

    Article  Google Scholar 

  • van Aalderen-Smeets, S. I., & van der Molen, J. H. W. (2018). Modeling the relation between students’ implicit beliefs about their abilities and their educational STEM choices. International journal of technology and design education, 28(1), 1–27.

    Article  Google Scholar 

  • VanLeuvan, P. (2004). Young women’s science/mathematics career goals from seventh grade to high school graduation. The Journal of Educational Research, 97(5), 248–268.

    Article  Google Scholar 

  • Vrugt A. Oort FJ, Waardenburg L. (2008). Motivation of men and women in mathematics and language. International Journal of Psychology, 44(5), 351–359.

  • Xu, Y.J. (2017). Attrition of women in STEM: examining job/major congruence in the career choices of college graduates. Journal of Career Development, 44(1). https://doi.org/10.1177/0894845316633787

  • Wang, M. T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24(5), 770–775.

    Article  Google Scholar 

  • Wells, B. H., Sanchez, H. A., & Attridge, J. M. (2007). Modeling student interest in science, technology, engineering and mathematics. In 2007 IEEE Meeting the Growing Demand for Engineers and Their Educators 2010-2020 International Summit (Vol. 50, pp. 1-17). IEEE.

  • Zhang, L., & Barnett, M. (2015). How high school students envision their STEM career pathways. Cultural Studies of Science Education, 10(3), 637–656.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Frederick French (Mount Saint Vincent University, Department of Education) for assistance with the survey tool design and insightful comments. We are grateful to the individuals who helped our team obtain parental consent forms and parents for providing consent for the children to participate in this study.

Funding

Funding was provided to (T. A. Franz-Odendaal) by a grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara A. Franz-Odendaal.

Ethics declarations

This research was approved by Mount Saint Vincent University’s Research Ethics Board (File # 2011-106) and permissions were obtained from school board superintendents and parents/guardians.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franz-Odendaal, T.A., Blotnicky, K.A. & Joy, P. Math Self-efficacy and the Likelihood of Pursuing a STEM-Based Career: a Gender-Based Analysis. Can. J. Sci. Math. Techn. Educ. 20, 538–556 (2020). https://doi.org/10.1007/s42330-020-00105-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-020-00105-7

Keywords

Navigation