Skip to main content

Advertisement

Log in

Structure-Based Design of Potential Anti-schistosomiasis Agent Targeting SmHDAC8: An In Silico Approach Utilizing QSAR, MD Simulation and ADMET Prediction

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Due to the increasing emergences of drug resistance, there is a need to discover new drugs that can target Schistosoma mansoni histone deacetylase 8 (SmHDAC8) and effectively combat Schistosomiasis. In view of this, an in-silico approach was employed to identify potential inhibitors by evaluating the binding energy and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of SmHDAC8 inhibitors. Employing density functional theory (DFT) calculations with the B3LYP/6-311G* as basis set, the optimal configuration of SmHDAC8 inhibitors was established, and a quantitative structure activity relationship (QSAR) model was constructed utilizing a combined genetic function approximation and multilinear regression (GFA-MLR) methodology. The selected model demonstrated strong statistical parameters, including R2 of 0.896, \({\text{R}}_{{{\text{adj}}}}^{2}\) of 0.877, \({\text{Q}}_{{{\text{cv}}}}^{2}\) of 0.863, \({\text{R}}_{{{\text{test}}}}^{2}\) of 0.662, and \({\text{cR}}_{{\text{p}}}^{2}\) of 0.747, confirming its reliability. Molecular docking screening was then utilized to position the derivatives into the active site of the SmHDAC8 target (PDB ID: 4BZ8). This analysis revealed Compound 26 as a highly promising lead candidate, displaying a MolDock score of − 137.103 kcal/mol. Four novel compounds were designed, showing improved binding affinities (− 151.376 to − 154.777 kcal/mol) and predicted activities (6.928 – 7.060) compared to the lead compound and standard drug, PZQ. Further validation was conducted through molecular dynamics (MD) simulations on compound 26d, confirming the stability and integrity of the docked complex. Additionally, an assessment of drug-likeness and ADMET properties indicated favorable pharmacokinetic profiles for the designed analogs, with no violations of Lipinski's rule of five. These newly designed derivatives hold promise as novel agents for the treatment of Schistosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6:
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Barnett R (2018) Schistosomiasis. Lancet (London, England) 392(10163):2431

    Article  PubMed  Google Scholar 

  2. Mutapi F, Maizels R, Fenwick A, Woolhouse M (2017) Human schistosomiasis in the post mass drug administration era. Lancet Infect Dis 17(2):e42–e48

    Article  PubMed  Google Scholar 

  3. Faust CL, Osakunor DNM, Downs JA, Kayuni S, Stothard JR, Lamberton PHL et al (2020) Schistosomiasis control: leave no age group behind. Trends Parasitol 36(7):582–591

    Article  PubMed  PubMed Central  Google Scholar 

  4. McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou XN (2018) Schistosomiasis. Nat Rev Dis Primers 4(1):13

    Article  PubMed  Google Scholar 

  5. Adenowo AF, Oyinloye BE, Ogunyinka BI, Kappo AP (2015) Impact of human schistosomiasis in sub-Saharan Africa. Braz J Infect Dis 19(2):196–205

    Article  PubMed  PubMed Central  Google Scholar 

  6. WHO. WHO GUIDELINE on control and elimination of human schistosomiasis: WHO; 2022. https://apps.who.int/iris/bitstream/handle/10665/351856/9789240041608-eng.pdf?sequence=1&isAllowed=y. Accessed 9 Mar 2023

  7. LoVerde PT (2019) Schistosomiasis. Adv Exp Med Biol 1154:45–70

    Article  PubMed  Google Scholar 

  8. Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet (London, England) 368(9541):1106–1118

    Article  PubMed  Google Scholar 

  9. McManus DP, Bergquist R, Cai P, Ranasinghe S, Tebeje BM, You H (2020) Schistosomiasis-from immunopathology to vaccines. Semin Immunopathol 42(3):355–371

    Article  PubMed  PubMed Central  Google Scholar 

  10. Molehin AJ, McManus DP, You H (2022) Vaccines for human schistosomiasis: recent progress, new developments and future prospects. Int J Mol Sci 23(4):2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molehin AJ, Rojo JU, Siddiqui SZ, Gray SA, Carter D, Siddiqui AA (2016) Development of a schistosomiasis vaccine. Expert Rev Vaccines 15(5):619–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Collyer BS, Turner HC, Hollingsworth TD, Keeling MJ (2019) Vaccination or mass drug administration against schistosomiasis: a hypothetical cost-effectiveness modelling comparison. Parasit Vectors 12(1):499

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hotez PJ, Pecoul B (2010) “Manifesto” for advancing the control and elimination of neglected tropical diseases. PLoS Negl Trop Dis 4(5):e718

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ghazy E, Heimburg T, Lancelot J, Zeyen P, Schmidtkunz K, Truhn A et al (2021) Synthesis, structure–activity relationships, cocrystallization and cellular characterization of novel smHDAC8 inhibitors for the treatment of schistosomiasis. Eur J Med Chem 225:113745

    Article  CAS  PubMed  Google Scholar 

  15. Pierce RJ, Dubois-Abdesselem F, Caby S, Trolet J, Lancelot J, Oger F et al (2011) Chromatin regulation in schistosomes and histone modifying enzymes as drug targets. Mem Inst Oswaldo Cruz 106(7):794–801

    Article  CAS  PubMed  Google Scholar 

  16. Pagliazzo L, Caby S, Lancelot J, Salomé-Desnoulez S, Saliou JM, Heimburg T et al (2021) Histone deacetylase 8 interacts with the GTPase SmRho1 in Schistosoma mansoni. PLoS Negl Trop Dis 15(11):e0009503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heimburg T, Chakrabarti A, Lancelot J, Marek M, Melesina J, Hauser AT et al (2016) Structure-based design and synthesis of novel inhibitors targeting HDAC8 from Schistosoma mansoni for the treatment of Schistosomiasis. J Med Chem 59(6):2423–2435

    Article  CAS  PubMed  Google Scholar 

  18. Dziwornu GA, Attram HD, Gachuhi S, Chibale K (2020) Chemotherapy for human schistosomiasis: how far have we come? What’s new? Where do we go from here? RSC Med Chem 11(4):455–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reddy ND, Shoja MH, Biswas S, Nayak PG, Kumar N, Rao CM (2016) An appraisal of cinnamyl sulfonamide hydroxamate derivatives (HDAC inhibitors) for anti-cancer, anti-angiogenic and anti-metastatic activities in human cancer cells. Chem Biol Interact 253:112–124

    Article  CAS  PubMed  Google Scholar 

  20. Park H, Kim S, Kim YE, Lim SJ (2010) A structure-based virtual screening approach toward the discovery of histone deacetylase inhibitors: identification of promising zinc-chelating groups. ChemMedChem 5(4):591–597

    Article  CAS  PubMed  Google Scholar 

  21. Batool M, Ahmad B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci 20(11):2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abchir O, Daoui O, Belaidi S, Ouassaf M, Qais FA, ElKhattabi S et al (2022) Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies. J Mol Model 28(4):106

    Article  CAS  PubMed  Google Scholar 

  23. Ibrahim MT, Uzairu A, Shallangwa GA, Uba S (2020) Structure-based design and activity modeling of novel epidermal growth factor receptor kinase inhibitors; an in silico approach. Sci Afr 9:e00503

    Google Scholar 

  24. Aouidate A, Ghaleb A, Ghamali M, Chtita S, Ousaa A, Choukrad M et al (2018) Furanone derivatives as new inhibitors of CDC7 kinase: development of structure activity relationship model using 3D QSAR, molecular docking, and in silico ADMET. Struct Chem 29:1–13

    Article  Google Scholar 

  25. Belhassan A, Chtita S, Zaki H, Alaqarbeh M, Alsakhen N, Almohtaseb F et al (2022) In silico detection of potential inhibitors from vitamins and their derivatives compounds against SARS-CoV-2 main protease by using molecular docking, molecular dynamic simulation and ADMET profiling. J Mol Struct 1258:132652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ojha Lokendra K, Rachana S, Rani BM (2013) Modern drug design with advancement in QSAR: a review. Int J Res Biosci 2:1–12

    Google Scholar 

  27. Shenfield GM (1982) Fixed combination drug therapy. Drugs 23(6):462–480

    Article  CAS  PubMed  Google Scholar 

  28. Stitou M, Toufik H, Bouachrine M, Lamchouri F (2021) Quantitative structure-activity relationships analysis, homology modeling, docking and molecular dynamics studies of triterpenoid saponins as Kirsten rat sarcoma inhibitors. J Biomol Struct Dyn 39(1):152–170

    Article  CAS  PubMed  Google Scholar 

  29. Olasupo SB, Uzairu A, Shallangwa GA, Uba S (2020) Chemoinformatic studies on some inhibitors of dopamine transporter and the receptor targeting schizophrenia for developing novel antipsychotic agents. Heliyon 6(7):e04464

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marek M, Kannan S, Hauser A-T, Moraes Mourão M, Caby S, Cura V et al (2013) Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog 9(9):e1003645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petit J, Meurice N, Kaiser C, Maggiora G (2012) Softening the rule of five—where to draw the line? Bioorg Med Chem 20(18):5343–5351

    Article  CAS  PubMed  Google Scholar 

  32. Ibrahim MT, Uzairu A, Uba S, Shallangwa GA (2020) Quantitative structure—activity relationship, molecular docking, drug-likeness, and pharmacokinetic studies of some non-small cell lung cancer therapeutic agents. Beni Suef Univ J Basic Appl Sci 9(1):49

    Article  Google Scholar 

  33. Daoui O, Haloui R, Mkhayar K, Abchir O, Nour H, Khattabi S, et al (2022) QSAR modeling, pharmacokinetics and molecular docking investigations of novel neocryptolepine derivatives as Hits against HepG2 Cells. RHAZES Green Appl Chem 46–62

  34. Aminu KS, Uzairu A, Abechi SE, Shallangwa GA, Umar AB (2022) Ligand-based drug design, molecular docking and pharmacokinetic studies of some series of 1,4-dihydropyridines derivatives as human intestinal maltase-glucoamylase inhibitor. Chem Data Collect 41:100911

    Article  CAS  Google Scholar 

  35. Aminu KS, Uzairu A, Shallangwa ABU (2023) A search for novel antidiabetic agents using ligand-based drug design and molecular docking studies employing human intestinal maltase-glucoamylase as model enzyme. Adv J Chem A 155–171

  36. Umar AB, Uzairu A, Shallangwa GA, Uba S (2020) QSAR modelling and molecular docking studies for anti-cancer compounds against melanoma cell line SK-MEL-2. Heliyon 6(3):e03640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lipiński PFJ, Szurmak P (2017) SCRAMBLE’N’GAMBLE: a tool for fast and facile generation of random data for statistical evaluation of QSAR models. Chem Zvesti 71(11):2217–2232

    PubMed  PubMed Central  Google Scholar 

  38. Mitra I, Saha A, Roy K (2010) Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul 36(13):1067–1079

    Article  CAS  Google Scholar 

  39. Vicenţiu V, Tudor O, Lavinia V, Marius B, Ciprian C, Mihai M, Dan C (2009) Quantitative structure-activity relationship (QSAR). IV. Analysis of the toxicity of aliphatic esters by means of weighted holistic invariant molecular (whim) descriptors. Farm J 4:511–522

    Google Scholar 

  40. Ibrahim MT, Uzairu A, Shallangwa GA, Uba S (2020) In-silico activity prediction and docking studies of some 2, 9-disubstituted 8-phenylthio/phenylsulfinyl-9h-purine derivatives as anti-proliferative agents. Heliyon 6(1):e03158

    Article  PubMed  PubMed Central  Google Scholar 

  41. Abdullahi SH, Uzairu A, Shallangwa GA, Uba S, Umar AB (2022) In-silico activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer (MDA-MB231) cell line. Bull Natl Res Cent 46(1):2

    Article  Google Scholar 

  42. Abdullahi SH, Uzairu A, Shallangwa GA, Uba S, Umar AB (2023) Ligand-based drug design of quinazolin-4(3H)-ones as breast cancer inhibitors using QSAR modeling, molecular docking, and pharmacological profiling. J Egypt Natl Cancer Inst 35(1):24

    Article  Google Scholar 

  43. Castro-Alvarez A, Costa A, Vilarrasa J (2017) The performance of several docking programs at reproducing protein–macrolide-like crystal structures. Molecules 22:136

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aminu KS, Uzairu A, Umar AB, Ibrahim MT (2022) Salicylic acid derivatives as potential α-glucosidase inhibitors: drug design, molecular docking and pharmacokinetic studies. Bull Natl Res Cent 46(1):162

    Article  Google Scholar 

  45. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4(2):90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  47. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1):3–25

    Article  CAS  Google Scholar 

  49. Mebarka O, Belaidi S, Khamouli S, Belaidi H, Chtita S (2021) Combined 3D-QSAR and molecular docking analysis of thienopyrimidine derivatives as Staphylococcus aureus inhibitors. Acta Chim Slov 68:289–303

    Article  Google Scholar 

  50. Bhutto JA, Mubashir T, Tahir MH, Hafsa AF, Sayed SRM et al (2023) Virtual screening and library enumeration of new hydroxycinnamates based antioxidant compounds: a complete framework. J Saudi Chem Soc 27(4):101670

    Article  CAS  Google Scholar 

  51. Ahmed A, Saeed A, Ejaz SA, Aziz M, Hashmi MZ, Channar PA et al (2022) Novel adamantyl clubbed iminothiazolidinones as promising elastase inhibitors: design, synthesis, molecular docking, ADMET and DFT studies. RSC Adv 12(19):11974–11991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ouassaf M, Belaidi S, Mogren Al Mogren M, Chtita S, Ullah Khan S, Thet Htar T (2021) Combined docking methods and molecular dynamics to identify effective antiviral 2, 5-diaminobenzophenonederivatives against SARS-CoV-2. J King Saud Univ Sci 33(2):101352

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zafar F, Gupta A, Thangavel K, Khatana K, Sani AA, Ghosal A et al (2020) Physicochemical and pharmacokinetic analysis of anacardic acid derivatives. ACS Omega 5(11):6021–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ogu CC, Maxa JL (2000) Drug interactions due to cytochrome P450. Baylor Univ Med Cent Proc 13(4):421–423

    Article  CAS  Google Scholar 

  55. Chalkha M, Med A, Moussaid FZ, Daoui O, Asmae N, Bakhouch M, Chtita S, Khattabi S, Abdelilah I, Yazidi M (2022) Design, synthesis, characterization, in vitro screening, molecular docking, 3D-QSAR, and ADME-Tox investigations of novel pyrazole derivatives as antimicrobial agents. New J Chem 46:2747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ahmadu Bello University, Zaria-Nigeria for providing the soft wares adopted in this research and all the members of the Chemistry department for their kind advice and encouragement.

Funding

No funding was received by the authors for this research.

Author information

Authors and Affiliations

Authors

Contributions

SCJ: designed, performed the study, interpreted the results and wrote the manuscript. AU: interpreted the results and edited the manuscript, MSS: interpreted the results and edited the manuscript, GIN: interpreted the results and edited the manuscript, MTI: interpreted the results and edited the manuscript, AUD: molecular dynamic simulations and interpretation of results.

Corresponding author

Correspondence to Saudatu Chinade Ja’afaru.

Ethics declarations

Conflict of interest

No competing interests was declared by the authors.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ja’afaru, S.C., Uzairu, A., Sallau, M.S. et al. Structure-Based Design of Potential Anti-schistosomiasis Agent Targeting SmHDAC8: An In Silico Approach Utilizing QSAR, MD Simulation and ADMET Prediction. Chemistry Africa 7, 725–745 (2024). https://doi.org/10.1007/s42250-023-00777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00777-2

Keywords

Navigation