Skip to main content

Advertisement

Log in

Integrated Spectroscopic, Bio-active Prediction and Analytics of Isoquinoline Derivative for Breast Cancer Mitigation

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Breast cancer has been declared as the world’s most prevalent cancer with over 7.8 million fatalities reported in 2020. Despite the numerous efforts in therapeutics and early detection programmes in combination with several treatment, the rate of mortality reported is still on the increase. This might arise from the insufficient data recorded in terms of healthcare analytics of the therapeutic agents used along with patients’ responsiveness and health complications. Thus, the need for the development, optimization and screening of more efficient bioactive therapeutic targets. Herein, we report the synthesis, spectroscopy and in-silico analysis of (E)-2-decyl-6-((6,7-dihydroxynaphthalen-1-yl)diazinyl)-1H-[de] isoquinoline-1,3(2H)-dione (AGI) as potential bioactive anti-cancer agent. Koopman’s approximation method was utilized for the analysis of global reactivity and stability parameters of the considered structure. The studied structure was observed to have an energy gap of 2.806 eV. Several population analyses, frontier molecular orbitals, and non-linear optical (NLO) analysis were computed at the same theoretical level. The anticancer potency of the studied structure was further assessed via in-silico molecular docking. From the docking analysis, higher binding affinity were observed to be − 9.90 kcal/mol and − 10.10 kcal/mol for AGI and ARO interaction with 4R5Y amino acid. The conventional therapeutic candidate (Aromasin) for breast cancer was used as standard reference to appraise the efficacy of the studied structure. The findings of this study affirm the potential utilization of the studied system in the formulation and mitigation of breast cancer. The methods used to arrive at these conclusions are accurate and predict the various properties to reasonable extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roco Á, Cerda B, Cayún JP, Lavanderos A, Rubilar JC, Cerro R et al (2018) Pharmacogenetics, tobacco, alcohol and its effect on the risk development cancer. Revista Chilena de Pediatria 89(4):432–440

    Google Scholar 

  2. Raguz S, Yagüe E (2008) Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer 99(3):387–391

    Article  CAS  Google Scholar 

  3. Sreejaya SB, Santhy KS (2013) Cytotoxic properties of Acorus calamus in MCF-7 breast cancer cells. Int J Curr Res Acad Rev 1(1):106–111

    CAS  Google Scholar 

  4. Aiello S, Wells G, Stone EL, Kadri H, Bazzi R, Bell DR et al (2008) Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agent 2-(3, 4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648). J Med Chem 51(16):5135–5139

    Article  CAS  Google Scholar 

  5. Rehman N, Khalid M, Bhatti MH, Yunus U, Braga AAC, Ahmed F et al (2018) Schiff base of isoniazid and ketoprofen: synthesis, X-ray crystallographic, spectroscopic, antioxidant, and computational studies. Turk J Chem 42(3):639–651

    CAS  Google Scholar 

  6. Odey JO, Louis H, Agwupuye JA, Moshood YL, Bisong EA, Brown OI (2021) Experimental and theoretical studies of the electrochemical properties of mono azo dyes derived from 2-nitroso-1-naphthol, 1-nitroso-2-naphthol, and CI disperse yellow 56 commercial dye in dye-sensitized solar cell. J Mol Struct 1241:130615

    Article  CAS  Google Scholar 

  7. Doloczki S, Holmberg KO, Galván IF, Swartling FJ, Dyrager C (2022) Photophysical characterization and fluorescence cell imaging applications of 4-N-substituted benzothiadiazoles. RSC Adv 12(23):14544–14550

    Article  CAS  Google Scholar 

  8. Eno EA, Louis H, Unimuke TO, Agwamba EC, Etim AT, Mbonu JI et al (2022) Photovoltaic properties of novel reactive azobenzoquinolines: experimental and theoretical investigations. Phys Sci Rev. https://doi.org/10.1515/psr-2021-0191

    Article  Google Scholar 

  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford

  10. Dennington R, Keith TA, Millam JM (2016) GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA. HyperChem, T. (2001). HyperChem 8.07, HyperChem Professional Program. Gainesville, Hypercube

  11. Jomroz MH (2004) Vibrational energy distribution analysis, VEDA4. ScienceOpen Inc., Warsaw

    Google Scholar 

  12. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  13. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochimica et Biophysica Acta (BBA) Biomembranes 1758(7):858–867

    Article  CAS  Google Scholar 

  14. Gunasekaran S, Seshadri S, Muthu S, Kumaresan S, Arunbalaji R (2008) Vibrational spectroscopy investigation using ab initio and density functional theory on p-anisaldehyde. Spectrochimica Acta Part A Mol Biomol Spectrosc 70(3):550–556

    Article  CAS  Google Scholar 

  15. Mumit MA, Pal TK, Alam MA, Islam MAAAA, Paul S, Sheikh MC (2020) DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J Mol Struct 1220:128715

    Article  CAS  Google Scholar 

  16. Gunasekaran S, Seshadri S, Muthu S (2006) Vibrational spectra and normal coordinate analysis of flucytosine

  17. Edim MM, Louis H, Bisong EA, Chioma AG, Enudi OC, Unimuke TO et al (2021) Electronic structure theory study of the reactivity and structural molecular properties of halo-substituted (F, Cl, Br) and heteroatom (N, O, S) doped cyclobutane. Phys Sci Rev. https://doi.org/10.1515/psr-2020-0138

    Article  Google Scholar 

  18. Ayyappan S, Sundaraganesan N, Aroulmoji V, Murano E, Sebastian S (2010) Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug methotrexate. Spectrochim Acta Part A Mol Biomol Spectrosc 77(1):264–275

    Article  CAS  Google Scholar 

  19. Chandana SN, Al-Ostoot FH, Mohammed YHE, Al-Ramadneh TN, Akhileshwari P, Khanum SA et al (2021) Synthesis, structural characterization, and DFT studies of anti-cancer drug N-(2-aminophenyl)-2-(4-bromophenoxy) acetamide. Heliyon 7(3):e06464

    Article  CAS  Google Scholar 

  20. Ameuru US, Okah PK, Saliu HR, Yakubu CI (2020) Synthesis and dyeing performance of azo-anthraquinone dyes on polyester fabrics. In: Science forum (Journal of Pure and Applied Sciences), vol 20, no 2. Faculty of Science, Abubakar Tafawa Balewa University Bauchi, pp 150–156

  21. Ren Y, Li MY, Song YX, Sui MY, Sun GY, Qu XC et al (2021) Refined standards for simulating UV–Vis absorption spectra of acceptors in organic solar cells by TD-DFT. J Photochem Photobiol, A 407:113087

    Article  CAS  Google Scholar 

  22. Prabakaran A, Vijayakumar V, Radhakrishnan N, Chidambaram R, Muthu S (2022) Experimental and quantum chemical computational analysis of novel N4,N4′-dimethyl-[1,1′-biphenyl]-3,3′,4,4′-tetraamine. Polycyclic Aromat Compd 42(3):925–941

    Article  CAS  Google Scholar 

  23. ElKhattabi S, Hachi M, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Bouachrine M (2019) Theoretical study of the effects of modifying the structures of organic dyes based on N,N-alkylamine on their efficiencies as DSSC sensitizers. J Mol Model 25(1):9

    Article  CAS  Google Scholar 

  24. Bhavani K, Renuga S, Muthu S (2015) Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 2-acetoxybenzoic acid by density functional methods. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1260–1268

    Article  CAS  Google Scholar 

  25. Ranjan P, Kumar P, Chakraborty T, Sharma M, Sharma S (2020) A study of structure and electronic properties of chalcopyrites semiconductor invoking Density Functional Theory. Mater Chem Phys 241:122346

    Article  CAS  Google Scholar 

  26. Louis H, Gber TE, Asogwa FC, Eno EA, Unimuke TO, Bassey VM, Ita BI (2022) Understanding the lithiation mechanisms of pyrenetetrone-based carbonyl compound as cathode material for lithium-ion battery: insight from first principle density functional theory. Mater Chem Phys 278:125518

    Article  CAS  Google Scholar 

  27. Undiandeye UJ, Louis H, Gber TE, Egemonye TC, Agwamba EC, Undiandeye IA, Adeyinka AS, Ita BI (2022) Spectroscopic, conformational analysis, structural benchmarking, excited state dynamics, and the photovoltaic properties of Enalapril and Lisinopril. J Indian Chem Soc 99(7):100500

    Article  CAS  Google Scholar 

  28. Bassey VM, Apebende CG, Idante PS, Louis H, Emori W, Cheng CR et al (2022) Vibrational characterization and molecular electronic investigations of 2-acetyl-5-methylfuran using FT-IR, FT-Raman, UV–VIS, NMR, and DFT methods. J Fluoresc 32(3):1005–1017

    Article  CAS  Google Scholar 

  29. Christopher JC (2004) Essentials of computational chemistry: theories and models

  30. Mao JX (2014) Atomic charges in molecules: a classical concept in modern computational chemistry. J Postdr Res 2(2). https://doi.org/10.14304/SURYA.JPR.V2N2.2

  31. Obu QS, Louis H, Odey JO, Eko IJ, Abdullahi S, Ntui TN, Offiong OE (2021) Synthesis, spectra (FT-IR, NMR) investigations, DFT study, in silico ADMET and molecular docking analysis of 2-amino-4-(4-aminophenyl) thiophene-3-carbonitrile as a potential anti-tubercular agent. J Mol Struct 1244:130880

    Article  CAS  Google Scholar 

  32. Kores JJ, Danish IA, Sasitha T, Stuart JG, Pushpam EJ, Jebaraj JW (2021) Spectral, NBO, NLO, NCI, aromaticity and charge transfer analyses of anthracene-9,10-dicarboxaldehyde by DFT. Heliyon 7(11):e08377

    Article  Google Scholar 

  33. Suresh M, Bahadur SA, Athimoolam S (2015) Investigations on spectroscopic, optical, thermal and dielectric properties of a new NLO material: l-histidinium p-toluenesulfonate [LHPT]. Optik 126(24):5452–5455

    Article  CAS  Google Scholar 

  34. Asogwa FC, Agwamba EC, Louis H, Muozie MC, Benjamin I, Gber TE et al (2022) Structural benchmarking, density functional theory simulation, spectroscopic investigation and molecular docking of N-(1H-pyrrol-2-yl) methylene)-4-methylaniline as castration-resistant prostate cancer chemotherapeutic agent. Chem Phys Impact 5:100091

    Article  Google Scholar 

  35. Nicholson MIG, Bueno PR, Feliciano GT (2020) Ab initio QM/MM simulation of ferrocene homogeneous electron-transfer reaction. J Phys Chem A 125(1):25–33

    Article  Google Scholar 

  36. Sadeghi S, Shiri HM, Ehsani A, Oftadeh M (2020) Electrosynthesis of high-purity TbMn2O5 nanoparticles and its nanocomposite with conjugated polymer: surface, density of state and electrochemical investigation. Solid State Sci 105:106227

    Article  CAS  Google Scholar 

  37. Eno EA, Louis H, Unimuke TO, Gber TE, Mbonu IJ, Ndubisi CJ, Adalikwu SA (2022) Reactivity, stability, and thermodynamics of para-methylpyridinium-based ionic liquids: insight from DFT, NCI, and QTAIM. J Ion Liq 2(1):100030

    Article  Google Scholar 

  38. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Article  CAS  Google Scholar 

  39. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71(6):525–616

    Article  CAS  Google Scholar 

  40. Eno EA, Mbonu JI, Louis H, Patrick-Inezi FS, Gber TE, Unimuke TO et al (2022) Antimicrobial activities of 1-phenyl-3-methyl-4-trichloroacetyl-pyrazolone: experimental, DFT studies, and molecular docking investigation. J Indian Chem Soc 99(7):100524

    Article  CAS  Google Scholar 

  41. Egemonye TC, Louis H, Unimuke TO, Gber TE, Edet HO, Bassey VM, Adeyinka AS (2022) First principle density functional theory study on the electrochemical properties of cyclohexanone derivatives as organic carbonyl-based cathode material for lithium-ion batteries. Arab J Chem 15(23):104026

    Article  CAS  Google Scholar 

  42. Bitencourt-Ferreira G, Azevedo WFD (2019) Molegro virtual docker for docking. In: Docking screens for drug discovery. Humana, New York, pp 149–167

  43. Biovia DS, DSME R (2017) San Diego: Dassault Systèmes, 2016

  44. Tang Z, Yuan X, Du R, Cheung S, Zhang G, Wei J (2015) BGB-283, a novel RAF kinase and EGFR inhibitor, displays potent antitumor activity in B-RAF mutated colorectal cancers. Am Assoc Cancer Res. https://doi.org/10.1158/1535-7163.MCT-15-0262

    Article  Google Scholar 

  45. Benjamin I, Udoikono AD, Louis H, Agwamba EC, Unimuke TO, Owen AE, Adeyinka AS (2022) Antimalarial potential of naphthalene-sulfonic acid derivatives: molecular electronic properties, vibrational assignments, and in-silico molecular docking studies. J Mol Struct 1264:133298

    Article  CAS  Google Scholar 

  46. Patrick-Inezi FS, Emori W, Louis H, Apebende CG, Agwamba EC, Unimuke TO et al (2022) Analeptic activity of 2-hydroxyl-5-nitrobenzaldehyde: experimental, DFT studies, and in silico molecular docking approach. Healthc Anal 2:100030

    Article  Google Scholar 

  47. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP (2013) mTOR kinase structure, mechanism and regulation. Nature 497(7448):217–223

    Article  CAS  Google Scholar 

  48. Agwamba EC, Udoikono AD, Louis H, Udoh EU, Benjamin I, Igbalagh AT et al (2022) Synthesis, characterization, DFT studies, and molecular modeling of azo dye derivatives as potential candidate for trypanosomiasis treatment. Chem Phys Impact 4:100076

    Article  Google Scholar 

  49. Agwamba EC, Hassan LG, Muhammad A, Sokoto AM (2019) Taguchi optimization of carboxymethylation process and effect reaction efficiency on swelling capacity. Asian J Appl Sci 7(5). https://doi.org/10.24203/ajas.v7i5.5954

  50. Osigbemhe IG et al (2022) Synthesis, characterization, DFT studies, and molecular modeling of 2-(-(2-hydroxy-5-methoxyphenyl)-methylidene)-amino) nicotinic acid against some selected bacterial receptors. J Iran Chem Soc 19:3561–3576

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all those who have supported this work in any way.

Funding

This research has not received funding from any repository.

Author information

Authors and Affiliations

Authors

Contributions

CGA and PSI: Computational Calculations, Result Analysis, manuscript draft and editing. HL: Conceptualization, project design, and Software’s. TOU and TEG: Theoretical Calculations, review and Editing. EAA and IB: Molecular Docking.

Corresponding authors

Correspondence to Chioma G. Apebende or Hitler Louis.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4171 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apebende, C.G., Idante, P.S., Louis, H. et al. Integrated Spectroscopic, Bio-active Prediction and Analytics of Isoquinoline Derivative for Breast Cancer Mitigation. Chemistry Africa 5, 1979–1995 (2022). https://doi.org/10.1007/s42250-022-00479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00479-1

Keywords

Navigation