Skip to main content
Log in

Newbouldia laevis Leaves Extract as Tenable Eco-Friendly Corrosion Inhibitor for Aluminium Alloy AA7075-T7351 in 1 M HCl Corrosive Environment: Gravimetric, Electrochemical and Thermodynamic Studies

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The corrosion inhibition evaluation of aluminium alloy AA7075-T7351 in 1.0 M HCl environment, by biologically active and water soluble luteolin 7—glucoside and phenolic polymeric compounds in Newbouldia laevis (NBL) extracts—as organic corrosion inhibitors of aluminium—have been investigated using gravimetric, electrochemical and thermodynamic techniques respectively, at room temperature (25 ± 1 °C), and at elevated temperatures of 40, 50, 60 and 65 °C. Gravimetric results showed that optimal inhibition efficiency (\(\zeta\)), at room temperature (298 ± 1 K) and 338 K are 86.1% and 67.5% respectively for the maximum concentration of 0.6 g/L. This suggests that NBL extract was affected by temperature and accomplished the inhibiting episode through an electrostatic pull of the polymeric components of the NBL extract onto AA7075-T7351 coupons or physical adsorption, that obeyed Langmuir, Freundlich and Temkin adsorption isotherms, in increasing order; Temkin, Freundlich and Langmuir. Adsorption coefficient, \(K_{\text{ads}}\), and Gibb’s free energy of adsorption, \(\Delta {\text{G}}_{\text{ads}}^{0}\), values obtained from Temkin isotherms were high and proved that adsorption of NBL on AA7075-T7351 surfaces were strong and spontaneous. Potentiodynamic polarization and electrochemical impedance spectroscopy results showed that NBL is a mixed-type corrosion inhibitor of AA7075-T7351 in 1 M HCl environment, which was achieved through the blockage/obstruction/reduction of charge flow by the polymeric barrier on the aluminium alloy’s surface. Increases in the linear part of the Bode plot slopes with increase in NBL concentrations further indicated the existence of a protective layer on the AA7075-T7351 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gupta NK, Quraishi MA, Singh P, Srivastava V, Srivastava K, Verma C, Mukherjee AK (2017) Curcumine Longa: green and sustainable corrosion inhibitor for aluminium in HCl medium. Anal Bioanal Electrochem 9(2):245–265

    CAS  Google Scholar 

  2. Koch G (2017) Cost of corrosion. In: El-Sherik AM (ed) Trends in oil and gas corrosion research and technologies. Woodhead Publishing, Elsevier, Kidlington, pp 3–30

    Chapter  Google Scholar 

  3. Umoren SA, Eduok UM, Solomon MM, Udoh AP (2016) Corrosion inhibition by leaves and stem extracts of Sida acuta for mild steel in 1 M H2SO4 solutions investigated by chemical and spectroscopic techniques. Arab J Chem 9:S209–S224

    Article  CAS  Google Scholar 

  4. Goyal M, Kumar S, Bahadur I, Verma C, Ebenso EE (2018) Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: a review. J Mol Liq 256:563–573

    Article  CAS  Google Scholar 

  5. Reda S, Hameed A (2018) Cationic surfactant-Zn2+ systems as mixed corrosion inhibitors for carbon steel in a sodium chloride corrosive medium. Port Electrochim Acta 36(4):271–283

    Article  CAS  Google Scholar 

  6. Ganash AA, Obaid AY, Elroby SAK, Hermas AA (2016) Corrosion inhibition of aluminum by using synthesized dipyridinium salts. Int J Electrochem Sci 11:5564–5579

    Article  CAS  Google Scholar 

  7. Nazeer AA, Madkour M (2018) Potential use of smart coatings for corrosion protection of metals and alloys: a review. J Mol Liq 253:11–22

    Article  CAS  Google Scholar 

  8. Ahmadi Y, Ahmad S (2019) Surface-active antimicrobial and anticorrosive oleo-polyurethane/graphene oxide nanocomposite coatings: synergistic effects of in-situ polymerization and π-π interaction. Prog Org Coat 127:168–180

    Article  CAS  Google Scholar 

  9. Liu Y, Sun Q, Li W, Adair KR, Li J, Sun X (2017) A comprehensive review on recent progress in aluminum—air batteries. Green Energy Environ 2:246–277

    Article  Google Scholar 

  10. Pratikno H, Titah HS (2017) Bio-corrosion on aluminium 6063 by Escherichia coli, in Marine environment. IPTEK J Technol Sci 28(2):55–58

    Google Scholar 

  11. Talbot DEJ, Talbot JDR (2018) Corrosion science and technology. CRC Press, Boca Raton, p 23

    Google Scholar 

  12. Hemanth J (2009) Quartz (SiO2p) reinforced chilled metal matrix composite (CMMC) for automotive applications. Mater Des 30(2):323–329

    Article  CAS  Google Scholar 

  13. Sijo MT, Jayadevan KR (2016) Analysis of stir cast aluminium silicon carbide metal matrix composite: a comprehensive review. Int Conf Emerg Trends Eng Sci Technol Procedia Technol 24:379–385

    Google Scholar 

  14. Baradeswaran A, Elaya PA (2014) Study on mechanical and wear properties of 7075/Al2O3/graphite hybrid composites. Compos Part B 56:464–471

    Article  CAS  Google Scholar 

  15. Nwosu FO, Owate IO, Osarolube E (2018) Acidic corrosion inhibition mechanism of aluminum alloy using green inhibitors. Am J Mater Sci 8:45–50

    Google Scholar 

  16. Andreatta F, Terryn H, de Wit JHW (2003) Corrosion behaviour of different tempers of AA7075 aluminium alloy. Electrochim Acta 49(17–18):2851–2862. https://doi.org/10.1016/j.electacta.2004.01.046

    Article  CAS  Google Scholar 

  17. Zheng X, Gong M, Li Q, Guo L (2016) Corrosion inhibition of mild steel in sulfuric acid solution by loquat (Eriobotrya japonica Lindl.) leaves extract. Sci Rep 8:9140. https://doi.org/10.1038/s41598-018-27257-9

    Article  CAS  Google Scholar 

  18. Muthukrishnan P, Prakash P, Jeyaprabha B, Shankar K (2015) Stigmasterol extract from Ficushispida leaves as a green inhibitor for the mild steeel corrosion in 1 M HCl solution. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.09.005

    Article  Google Scholar 

  19. Arnott DR, Hinton BRW, Ryan NE (1989) Cationic- film-forming inhibitors for the protection of the AA7075 aluminium alloy against corrosion in aqueous chloride solution. Corrosion 45(1):12–18

    Article  CAS  Google Scholar 

  20. Winkler DA, Breedon M, Hughes AE, Burden FR, Barnard AS, Harvey TG, Cole I (2014) Towards chromate-free corrosion inhibitors: structure-property models for organic alternatives. Green Chem 16(6):3349–3357

    Article  CAS  Google Scholar 

  21. Harvey TG, Hardin SG, Hughes AE, Muster TH, Corrigan PA, Mardel J, Garcia SJ, Mol JMC, Glenn AM (2011) The effect of inhibitor structure on the corrosion of AA2024 and AA7075. Corros Sci 53(6):2184–2190

    Article  CAS  Google Scholar 

  22. Channouf RB, Souissi N, Zanna S, Ardelean H, Bellakhal N, Marcus P (2018) Surface characterization of the corrosion product layer formed on the synthetic bronze in aqueous chloride solution and the effect of the adding of juniperus communis extract by X-ray photoelectron spectroscopy analysis. Chem Afr 1(3–4):167–174

    Article  CAS  Google Scholar 

  23. Ansari KR, Quraishi MA, Singh A (2015) Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4. Corros Sci 95:62–70

    Article  CAS  Google Scholar 

  24. Saji VS (2010) A review on recent patent in corrosion inhibitors. Recent Pat Corros Sci 2:6–12

    Article  CAS  Google Scholar 

  25. Verma C, Quraishi MA, Ebenso EE, Obot IB, El Assyry A (2016) 3-Amino alkylated indoles as corrosion inhibitors for mild steel in 1 M HCl: experimental and theoretical studies. J Mol Liq 219:647–660

    Article  CAS  Google Scholar 

  26. Sharma YC, Sharma S (2016) Corrosion of aluminum by Psidium Guajava seeds in HCl solution. Port Electrochim Acta 34(6):365–382

    Article  CAS  Google Scholar 

  27. Nnanna LA, Uchendu KO, Ikwuagwu G, John WO, Ihekoronye U (2016) Inhibition of corrosion of aluminum alloy AA8011 in alkaline medium using Palisota hirsute extract. Int Lett Chem Phys Astron 67:14–20

    Article  Google Scholar 

  28. Chafki L, Rifi EH, Touir R, Touhami ME, Hatim Z (2018) Corrosion inhibition of mild steel in 1 M HCl solution by anhydrous tricalcium phosphate. Open Mater Sci J 12:69–81

    Article  Google Scholar 

  29. Raghavendra N, Bhat JI (2016) Natural products for material protection: an interesting and efficacious anticorrosive property of dry arecanut seed extract at electrode (aluminum)–electrolyte (hydrochloric acid) interface. J Biol Tribol Corros. 2:21

    Article  Google Scholar 

  30. Ennouri A, Lamiri A, Essahli M (2017) Corrosion inhibition of aluminium in acidic media by different extracts of Trigonellafoenum-graecum L. seeds. Port Electrochim Acta 35(5):279–295

    Article  CAS  Google Scholar 

  31. Abd-El-Naby BA, Abdullatef OA, El-Kshlan HM, Khamis E, Abd-El-Fatah MA (2015) Effect of alkaline etching on the inhibition of the acidic corrosion of aluminum by lupine extract. Port Electrochim Acta 33(1):1–11

    Article  CAS  Google Scholar 

  32. Nnanna LA, Obasi VU, Nwadiuko OC, Mejeh KI, Ekekwe ND, Udensi SC (2012) Inhibition by Newbouldia laevis leaf extract of the corrosion of aluminium in HCl and H2SO4 solutions. Arch Appl Sci Res 4(1):207–217

    CAS  Google Scholar 

  33. Ejikeme PM, Umana SG, Onukwuli OD (2012) Corrosion inhibition of aluminium by Treculia Africana leaves extract in acid medium. Port Electrochim Acta 30(5):317–328. https://doi.org/10.4152/pea.201205317

    Article  CAS  Google Scholar 

  34. Harbone BJ (1998) Phytochemical methods—a guide to modern techniques of plant analysis. Chapman and Hall, London. https://doi.org/10.1007/978-94-009-5570-7

    Book  Google Scholar 

  35. Standard practice for preparing, cleaning, and evaluating corrosion test specimens, ASTM G1-03 2003 standard

  36. Standard practice for Laboratory immersion corrosion testing of metals, ASTM G31-72 (re-approved 2004)

  37. Okoro CC, Samuel O, Lin J (2016) The effects of Tetrakis-hydroxymethyl phosphonium sulfate (THPS), nitrite and sodium chloride on methanogenesis and corrosion rates by methanogen populations of corroded pipelines. Corros Sci 112:507–516

    Article  CAS  Google Scholar 

  38. Manimegalai S, Manjula P (2015) Thermodynamic and adsorption studies for corrosion inhibition of mild steel in aqueous media by Sargasam swartzii (Brown algae). J Mater Environ Sci 6(6):1629–1637

    CAS  Google Scholar 

  39. Nwanonenyi SC, Obasi HC, Chukwujike IC, Chidiebere MA, Oguzie EE (2019) Inhibition of carbon steel corrosion in 1 M H2SO4 using soy polymer and polyvinylpyrrolidone. Chem Afr 2(2):277–289

    Article  CAS  Google Scholar 

  40. Verma C, Olasunkanmi LO, Ebenso EE, Quraishi MA, Obot IB (2016) Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J Phys Chem C 120:11598–11611

    Article  CAS  Google Scholar 

  41. Muthukrishnan P, Jeyaprabha B, Prakash P (2017) Adsorption and corrosion inhibiting behaviour of Lannea coromandelica leaf extract on mild steel corrosion. Arab J Chem 10:S2343–S2354

    Article  CAS  Google Scholar 

  42. Shivakumar SS, Mohana KN (2013) Studies on the inhibitive performance of Cinnamomum zeylanicum extracts on the corrosion of mild steel in hydrochloric acid and sulphuric acid media. J Mater Environ Sci 4(3):448–459

    CAS  Google Scholar 

  43. Iroha NB, Nnanna LA (2019) Electrochemical and adsorption study of the anticorrosion behavior of Cefepime on pipeline steel surface in acidic solution. J Mater Environ Sci 10(10):898–908

    CAS  Google Scholar 

  44. Nnanna LA, Nwadiuko OC, Ekekwe ND, Ukpabi CF, Udensi SC, Okeoma KB, Onwuagba BN, Mejeha IM (2011) Adsorption and inhibitive properties of leaf extract of Newbouldia leavis as a green inhibitor for aluminium alloy in H2SO4. Am J Mater Sci 1(2):143–148. https://doi.org/10.5923/j.materials.20110102.24

    Article  Google Scholar 

  45. Sharma SK, Peter A, Obot IB (2015) Potential of Azadirachta indica as a green corrosion inhibitor against mild steel, aluminum, and tin: a review. J Anal Sci Technol 6(1):26

    Article  CAS  Google Scholar 

  46. Hassan KH, Khadom AA, Kurshed NH (2016) Citrus aurantium leaves extracts as a sustainable corrosion inhibitor of mild steel in sulfuric acid. S Afr J Chem Eng 22:1–5

    Google Scholar 

  47. Ituen E, Akaranta O, James A (2017) Evaluation of performance of corrosion inhibitors using adsorption isotherm models: an overview. Chem Sci Int J 18(1):1–34

    Article  Google Scholar 

  48. Raghavendra N (2020) Green Compounds to attenuate aluminum corrosion in HCl activation: a necessity review. Chem Afr 3:21–34

    Article  CAS  Google Scholar 

  49. Verma C, Olasunkanmi LO, Ebenso EE, Quraishi MA (2018) Adsorption characteristics of green 5-arylaminomethylene pyrimidine-2,4,6-triones on mild steel surface in acidic medium: experimental and computational approach. Res Phys 8:657–670

    Google Scholar 

  50. Nnanna LA (2015) Electrochemical study of corrosion inhibition of mild steel in acidic solution using Gnetum Africana leaves extracts. Br J Appl Sci Technol 5(6):556–567

    Article  CAS  Google Scholar 

  51. Solmaz R (2014) Investigation of corrosion inhibition mechanism and stability of Vitamin B1 on mild steel in 0.5 M HCl solution. Corros Sci 81:75–84

    Article  CAS  Google Scholar 

  52. Elkhotfi Y, Forsal I, Rakib EM, Mernari B (2018) The inhibition action of essential oil of J. Juniperus Phoenicea on the corrosion of of mild steel in acidic media. Port Electrochim Acta 36(2):77–87

    Article  CAS  Google Scholar 

  53. Udensi SC, Ekpe OE, Nnanna LA (2019) Electrochemical, gravimetric and thermodynamic studies of corrosion inhibitive performance of Treculia africana on AA7075-T7351 in 1.0 M HCl. J Mater Environ Sci 10(12):1272–1295

    CAS  Google Scholar 

  54. Haddadi SA, Alibakhshi E, Bahlakeh G, Ramezanzadeh B, Mahdavian M (2019) A detailed atomic level computational and electrochemical exploration of the Juglans regia green fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution. J Mol Liq 284:682–699

    Article  CAS  Google Scholar 

  55. Alibakhshi E, Ghasemi E, Mahdavian M (2013) Corrosion inhibition by lithium zinc phosphate pigment. Corros Sci 77(2013):222–229. https://doi.org/10.1016/j.corsci.2013.08.005

    Article  CAS  Google Scholar 

  56. Alibakhshi E, Ramezanzadeh M, Haddadi SA, Bahlakeh G, Ramezanzadeh B, Mahdavian M (2019) Persian Liquorice extract as a highly efficient sustainable corrosion inhibitor for mild steel in sodium chloride solution. J Clean Prod 210:660–672

    Article  CAS  Google Scholar 

  57. Dehghani A, Bahlakeh G, Ramezanzadeh B (2019) A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution. J Mol Liq 282:366–384

    Article  CAS  Google Scholar 

  58. Aljourani J, Raeissi K, Golozar MA (2009) Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. Corros Sci 51:1836–1843

    Article  CAS  Google Scholar 

  59. Mahdavian M, Ashhari S (2010) Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution. Electrochim Acta 55:1720–1724. https://doi.org/10.1016/j.electacta.2009.10.055

    Article  CAS  Google Scholar 

  60. Bentiss F, Traisnel M, Lagrenee M (2000) The substituted 1, 3, 4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media. Corros Sci 42:127–146

    Article  CAS  Google Scholar 

  61. Frignani A, Tommesani L, Brunoro G, Monticelli C, Fogagnolo M (1999) Influence of the alkyl chain on the protective effects of 1,2,3-benzotriazole towards copper corrosion. Part I: inhibition of the anodic and cathodic reactions. Corros Sci 41:1205–1215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Udensi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udensi, S.C., Ekpe, O.E. & Nnanna, L.A. Newbouldia laevis Leaves Extract as Tenable Eco-Friendly Corrosion Inhibitor for Aluminium Alloy AA7075-T7351 in 1 M HCl Corrosive Environment: Gravimetric, Electrochemical and Thermodynamic Studies. Chemistry Africa 3, 303–316 (2020). https://doi.org/10.1007/s42250-020-00131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00131-w

Keywords

Navigation