Skip to main content

Advertisement

Log in

Evolution in the membrane-based materials and comprehensive review on carbon capture and storage in industries

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This paper describes the present use of carbon capture and storage in industries such as iron and steel and cement industry. It also describes how implications of carbon capture and sequestration can lead to reduction in global warming and can reduce the hazardous effects of carbon on environment. The major processes involved in carbon capture and sequestration are pre-combustion, post-combustion, and oxy-fuel have also been discussed. Also, the paper highlights how different membranes can contribute towards carbon capture and sequestration. Polymer, carbon molecular sieve, and organic microporous membrane advantages and drawbacks have also been discussed. For gas separation, the major membranes discussed are polymer, carbon sieve, and microporous organic membrane along with their use in different industries. Major focus still relies on how advancement of membrane can be done to have an optimal strategy for carbon capture and sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Sood, S. Vyas, A review: carbon capture and sequestration (CCS) in India. Int J Mech Eng Technol 8(2), 1–7 (2017)

    Google Scholar 

  2. D. Cebrucean, V. Cebrucean, I. Ionel, CO2 capture and storage from fossil fuel power plants. Energy Procedia 63, 18–26 (2014)

    Article  CAS  Google Scholar 

  3. D.W. Keith, G. Holmes, D. St. Angelo, K. Heidel, A process for capturing CO2 from the atmosphere. Joule 2(8), 1573–1594 (2018). https://doi.org/10.1016/j.joule.2018.05.006

    Article  CAS  Google Scholar 

  4. X. He, A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energy Sustain Soc 8, 34 (2018)

    Article  Google Scholar 

  5. Birat, J.P., 2010 Carbon dioxide (CO2) capture and storage technology in the iron and steel industry Developments and innovation in carbon dioxide (CO2) capture and storage technology, 492–521

  6. X. He, Q. Yu, M.B. Hägg, in Encyclopedia of Membrane Science and Technology, ed. by H. EMV, V. V. Tarabara. CO2 Capture (Wiley, 2013b), pp. 1–2390

  7. J.L. Míguez, J. Porteiro, R. Pérez-Orozco, M.A. Gómez, Technology evolution in membrane-based CCS. Energies 11, 1–18 (2018)

    Article  CAS  Google Scholar 

  8. Figueroa, J.D., Fout, T., Plasynski, S.,McIlvried, H., Srivastava, R.D., 2008. Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control.2, 9–\

    Article  CAS  Google Scholar 

  9. D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39, 426–443 (2014)

    Article  CAS  Google Scholar 

  10. J.C.M. Pires, F.G. Martins, M.C.M. Alvim-Ferraz, M. Simões, Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89, 1446–1460 (2011)

    Article  CAS  Google Scholar 

  11. B. Zheng, J. Xu, Carbon capture and storage development trends from a techno-paradigm perspective. Energies 7, 5221–5250 (2014)

    Article  Google Scholar 

  12. Y. Tan, W. Nookuea, H. Li, E. Thorin, J. Yan, Property impacts on carbon capture and storage (CCS) processes: a review. Energy Convers Manag 118, 204–222 (2016)

    Article  CAS  Google Scholar 

  13. C. Strazza, A. Del Borghi, M. Gallo, Development of specific rules for the application of life cycle assessment to carbon capture and storage. Energies 6, 1250–1265 (2013)

    Article  CAS  Google Scholar 

  14. Y. Li, Q.M. Wang, P.B. Wang, Evaluation of post-combustion CO2 capture technologies. Adv Mater Res 734–737, 1881–1886 (2013)

    Google Scholar 

  15. A.B. Rao, E.S. Rubin, A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36, 4467–4475 (2002)

    Article  CAS  Google Scholar 

  16. D. Jansen, M. Gazzani, G. Manzolini, E.V. Dijk, M. Carbo, Pre-combustion CO2 capture. Int J Greenh Gas Control 40, 167–187 (2015)

    Article  CAS  Google Scholar 

  17. C. Alie, L. Backham, E. Croiset, P.L. Douglas, Simulation of CO2 capture using MEA scrubbing: a flow sheet decomposition method. Energy Convers Manag 46, 475–487 (2005)

    Article  CAS  Google Scholar 

  18. J. Gomes, S. Santos, J. Bordado, Choosing amine-based absorbents for CO2 capture. Environ Technol 36, 19–25 (2015)

    Article  CAS  Google Scholar 

  19. N.S. Kwak, J.H. Lee, I.Y. Lee, K.R. Jang, J.G. Shim, A study of the CO2 capture pilot plant by amine absorption. Energy 47, 41–46 (2012)

    Article  CAS  Google Scholar 

  20. F. Vega, A. Sanna, B. Navarrete, M.M. Maroto-Valer, V.J. Cortés, Degradation of amine-based solvents inCO2 capture process by chemical absorption. Greenh Gases Sci Technol 4, 707–733 (2014)

    Article  CAS  Google Scholar 

  21. G. Xu, F. Liang, Y. Yang, Y. Hu, K. Zhang, W. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies 7, 3484–3502 (2014)

    Article  CAS  Google Scholar 

  22. Y. Tan, W. Nookuea, H. Li, E. Thorin, J. Yan, Evaluation of viscosity and thermal conductivity models forCO2 mixtures applied in CO2 cryogenic process in carbon capture and storage (CCS). Appl Therm Eng 123, 721–733 (2017)

    Article  CAS  Google Scholar 

  23. J.A. Swisher, A.S. Bhown, Analysis and optimal design of membrane-based CO2 capture processes for coal and natural gas-derived flue gas. Energy Procedia 63, 225–234 (2014)

    Article  CAS  Google Scholar 

  24. N. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Advances in high permeability polymeric membrane materials for CO2separations. Energy Environ Sci 5(6), 7306–7322 (2012)

    Article  CAS  Google Scholar 

  25. T.K. Carlisle, E.F. Wiesenauer, G.D. Nicodemus, D.L. Gin, R.D. Noble, Ideal CO2/light gas separation performance of poly(vinylimidazolium) membranes and poly(vinylimidazolium)-ionic liquid composite films. Ind Eng Chem Res 52(3), 1023–1032 (2012)

    Article  CAS  Google Scholar 

  26. X. He, Q. Yu, M.-B. Hägg, in Encyclopedia of Membrane Science and Technology, ed. by E. M. V. Hoek, V. V. Tarabara. CO2 Capture (Wiley, 2013b)

  27. B. Belaissaoui, E. Favre, Membrane separation processes for post-combustion carbon dioxide capture: state of the art and critical overview. Oil Gas Sci Technol – Rev IFP Energiesnouvelles 69(6), 1005–1020 (2014)

    Article  Google Scholar 

  28. Khalilpour, R., Mumford, K., Zhai, H., Abbas, A., Stevens, G., 2015. Rubin, E.S., Membrane-based carbon capture from flue gas: a review. J Clean Prod 103, 286–300

    Article  CAS  Google Scholar 

  29. K. Ramasubramanian, W.S.W. Ho, Recent developments on membranes for post-combustion carbon capture. Curr Opin Chemeng 1(1), 47–54 (2011)

    Article  CAS  Google Scholar 

  30. M. Wang, J. Zhao, X. Wang, A. Liu, K.K. Gleason, Recent progress on submicron gas-selective polymeric membranes. J Mater Chem A 5(19), 8860–8886 (2017)

    Article  CAS  Google Scholar 

  31. M.C. Ferrari, D. Bocciardo, S. Brandani, Integration of multi-stage membrane carbon capture processes to coal-fired power plants using highly permeable polymers. Green Energy Environ 1(3), 211–221 (2016)

    Article  Google Scholar 

  32. S. Roussanaly, R. Anantharaman, K. Lindqvist, H. Zhai, E. Rubin, Membrane properties required for post-combustion CO 2 capture at coal-fired power plants. J Membr Sci 511, 250–264 (2016)

    Article  CAS  Google Scholar 

  33. J.L. Li, B.H. Chen, Review of CO2 absorption using chemical solvents in hollow fiber membrane contractors. Sep Purif Technol 41(2), 109–122 (2005)

    Article  CAS  Google Scholar 

  34. G.H. Bakeri, A.F. Ismail, M. Sharialy-Miassar, T. Matsuaro, Effect of polymer concentration on the structure and performance of polyetherimide hollow fiber membrane. J Membr Sci 363(1–2), 103–111 (2010)

    Article  CAS  Google Scholar 

  35. E. Favre, Membrane processes and post combustion carbon dioxide capture: challenges and prospects. Chem Eng J 171(3), 782–793 (2011)

    Article  CAS  Google Scholar 

  36. Khalilpour, R., Abbas, A., Lai, Z.P., Pinnau, I., Modelling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas processing system engineering, 58(5), 1550–1561

  37. R. Wang, H.Y. Zhang, P.H.M. Feronand, D.T. Liomg, Influence of membrane writing on CO2 capture in microporous hollow fiber membrane contactors. Sep Purif Technol 46(1–2), 33–40 (2005)

    Article  CAS  Google Scholar 

  38. X. Wang, X. Han, Application of polymeric membrane in CO2 capture from post combustion. Adv Chem Eng Sci 2, 336–341 (2012)

    Article  CAS  Google Scholar 

  39. M. Duval, B. Folkers, M.H.V. Mulder, G. Desgrandchamps, C.A. Smolders, Absorbent filled membranes for gas separation, properties of polymeric membranes by incorporation of microporous absorbent. J. Member. Sci. 80(1), 189–198 (1993)

    Article  CAS  Google Scholar 

  40. R. Abedini, A. Mezhadmagshadam, Application of membrane in gas separation processes, its suitability and mechanisms. Petrol Coal 52, 69–80 (2010)

    CAS  Google Scholar 

  41. Faculty.uscupstate.edu/elever/polymer%20resources/Glasstrans.html, Accessed 31 Jan 2001

  42. A. Mushtaq, H.B. Mukhtar, A.M. Shariff, H.A. Mannan, A review: development of polymeric blend membrane for removal of CO2 from natural gas. Int J Eng Technol 13(2), 53–60 (2013)

    Google Scholar 

  43. L.Y. Chu, Thermo-responsive membranes for chiral resolution. Smart Membr Mater Syst, 121–143 (2011). https://doi.org/10.1007/978-3-642-18114-6_5

  44. M. Yoshikawa, K. Murakoshi, T. Kogita, K. Hanaoka, M.D. Guiver, G.P. Robertson, Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups. Eur Polym J 42, 2532–2539 (2006)

    Article  CAS  Google Scholar 

  45. M.A. Hillmyer, Nanoporous materials from block copolymer precursors. Adv Polym Sci, 137–181 (2005). https://doi.org/10.1007/12_002

  46. A.S. Zalusky, R. Olayo-Valles, J.H. Wolf, M.A. Hillmyer, Ordered nanoporous polymers from polystyrene–polylactide block copolymers. J Am Chem Soc 124, 12761–12773 (2002)

    Article  CAS  Google Scholar 

  47. J. Rzayev, M.A. Hillmyer, Nanoporous polystyrene containing hydrophilic pores from an ABC triblock copolymer precursor. Macromolecules 38(1), 3–5 (2005)

    Article  CAS  Google Scholar 

  48. G. Liu, J. Ding, A. Guo, M. Herfort, D. Bazzett-Jones, Macromolecules 30, 1851 (1997)

    Article  CAS  Google Scholar 

  49. Young, J.S., Berchtold, K.A., Eric, P., Greenberg, A.R. James, A., Onorato, F., Hopkins, S., 2005. Novel polymeric-metallic composite membranes for CO2 separations at elevated temperatures. 2005 AIChE spring National Meeting, conference proceedings. 1489-1494

  50. Peinemann, K., Nunes, S.P., 2007. Membranes for energy conversion. Wiley-VCH Verlag GmbH & Co. KGaA. 2, 1–286

  51. C. Dye, Robert & Jorgensen, Betty & Pesiri, David. 2004. Meniscus membranes for separations

  52. M. Ulbricht, Advanced functional polymer membranes. Polymer 47(7), 2217–2262 (2006)

    Article  CAS  Google Scholar 

  53. Wang, H., Yeager G.W.:US20070556901 2007

  54. Ekiner, O.M., Del, W., 1999. Gas separation membranes of blends of polyethersulfones with aromatic polyimides. 1-10

  55. S.E. Kentish, C.A. Scholes, G.W. Stevens, Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patent Chem Eng 1(1), 52–66 (2008)

    Article  Google Scholar 

  56. G.A. Grant, P.R. Fisher, J.E. Barrett, P.C. Wilson, Removal of paclobutrazol from irrigation water using granular-activated carbon. Irrig Sci 2018(36), 159–166 (2018)

    Article  Google Scholar 

  57. S.H. Han, H.J. Kwon, K.Y. Kim, J.G. Seong, C.H. Park, S. Kim, C.M. Doherty, A.W. Thornton, A.J. Hill, A.E. Lozano, K.A. Berchtold, Y.M. Lee, Tuning microcavities in thermally rearranged polymer membranes for CO2 capture. Phys Chem Chem Phys 14(13), 4365–4373 (2012)

    Article  CAS  Google Scholar 

  58. S. Kim, Y. Lee, Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. J Nanopart Res 14(7), 1–11 (2012)

    CAS  Google Scholar 

  59. H.B. Park, S.H. Han, C.H. Jung, Y.M. Lee, A.J. Hill, Thermally rearranged (TR) polymer membranes for CO2 separation. J Membr Sci 359(1–2), 11–24 (2010)

    Article  CAS  Google Scholar 

  60. H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318(5848), 254–258 (2007)

    Article  CAS  Google Scholar 

  61. N.B. McKeown, Polymers of intrinsic microporosity. ISRN Mater Sci 2012, 16 (2012)

    Article  CAS  Google Scholar 

  62. P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Adv Mater 16(5), 456–459 (2004)

    Article  CAS  Google Scholar 

  63. J. Ahn, W.J. Chung, I. Pinnau, J. Song, N. Du, G.P. Robertson, M.D. Guiver, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1). J Membr Sci 346(2), 280–287 (2010)

    Article  CAS  Google Scholar 

  64. W.F. Yong, F.Y. Li, Y.C. Xiao, T.S. Chung, Y.W. Tong, High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. J Membr Sci 443, 156–169.R (2013)

    Article  CAS  Google Scholar 

  65. N.B. McKeown, P.M. Budd, K.J. Msayib, B.S. Ghanem, H.J. Kingston, C.E. Tattershall, S. Makhseed, K.J. Reynolds, D. Fritsch, Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. Chem Eur J 11(9), 2610–2620 (2005)

    Article  CAS  Google Scholar 

  66. N. Du, H.B. Park, G.P. Robertson, M.M. Dal-Cin, T. Visser, L. Scoles, M.D. Guiver, Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10(5), 372–375 (2011)

    Article  CAS  Google Scholar 

  67. W. Zhou, L. Zhang, P. Wu, Y. Cai, X. Zhao, C. Yao, Study on permeability stability of sand-based, microporous, ceramic filter membrane. Materials 12, 1–14 (2019)

    Google Scholar 

  68. S. Wu, K. Song, J. Guan, Q. Kan, Synthesis and characterization of super-microporous material with enhanced hydrothermal stability. Bull Mater Sci 34(4), 979–983 (2011)

    Article  CAS  Google Scholar 

  69. Y.S. Do, W.H. Lee, J.G. Seong, J.S. Kim, H.H. Wang, C.M. Doherty, A.J. Hill, Y.M. Lee, Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes. Chem Commun 52(93), 13556–13559 (2016)

    Article  CAS  Google Scholar 

  70. B.S. Karnik, S.H. Davies, K.C. Chen, D.R. Jaglowski, M.J. Baumann, S.J. Masten, Effects of ozonation on the permeate flux of nano-crystaline ceramic membranes. Water Res 39, 728–734 (2005)

    Article  CAS  Google Scholar 

  71. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer. Graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9, 30–35 (2009)

    Article  CAS  Google Scholar 

  72. S. Milenkovic, A.J. Smith, A.W. Hassel, Single crystalline molybdenum nanowires, nanowire arrays and nanopore arrays in nickel-aluminium. J Nanosci Nanotechnol 9, 3411–3417 (2009)

    Article  CAS  Google Scholar 

  73. M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, D. Zhu, Electrochemical deposition of conductive superhydrophobic zinc oxide thin films. J Phys Chem B 2003(107), 9954–9957 (2003)

    Article  CAS  Google Scholar 

  74. M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernandez, M.C. Ferrari, R. Gross, J.P. Hallett, R.S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fennell, Carbon capture and storage update. Energy Environ Sci 7(1), 130–189 (2014)

    Article  CAS  Google Scholar 

  75. M.C. Campo, F.D. Magalhães, A. Mendes, Carbon molecular sieve membranes from cellophane paper. J Membr Sci 350(1–2), 180–188 (2010)

    Article  CAS  Google Scholar 

  76. J.E. Koresh, A. Soffer, Molecular-sieve carbon perm-selective membrane. 1. Presentation of a new device for gas–mixture separation. Sep Sci Technol 18(1983), 723–734 (1983)

    Article  CAS  Google Scholar 

  77. J.E. Koresh, A. Soffer, Mechanism of permeation through molecular-sieve carbon membrane. Part 1. The effect of adsorption and the dependence on pressure. J Chem Soc Faraday Trans 1(82), 2057–2063 (1986)

    Article  Google Scholar 

  78. C.W. Jones, W.J. Koros, Carbon molecular sieve gas separation membranes-II. Regeneration following organic exposure. Carbon 32(8), 1427–1432 (1994)

    Article  CAS  Google Scholar 

  79. J. Koresh, A. Soffer, Study of molecular sieve carbons. Part 1.—Pore structure, gradual pore opening and mechanism of molecular sieving. Journal of the chemical society, faraday transactions 1: Physical chemistry in condensed phases 76, 2457 (1980)

    Article  CAS  Google Scholar 

  80. A. Kapoor, R.T. Yang, Kinetic separation of methane—carbon dioxide mixture by adsorption on molecular sieve carbon. Chem Eng Sci 44(8), 1723–1733 (1989)

    Article  CAS  Google Scholar 

  81. H. Marsh, F. Rodriguez-Reinoso (eds.), Science of Carbon Materials (Universidad de Alicante, Secretariado de Publications, Spain, 2000), p. 673

    Google Scholar 

  82. Soffer, A., Koresh, J., Saggy, S., 1987. Separation devices. U.S. Patent 4,685,940

  83. X. He, M.B. Hägg, Hybrid fixed–site–carrier membranes for CO2/CH4 separation. ProcEng 44, 118–119 (2012b)

    CAS  Google Scholar 

  84. J.E. Koresh, A. Soffer, The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 Mixture. Sep Sci Technol 22(2–3), 973–982 (1987)

    Article  CAS  Google Scholar 

  85. J.N. Barsema, N.F.A. van der Vegt, G.H. Koops, M. Wessling, Ag-functionalized carbon molecular-sieve membranes based on polyelectrolyte/polyimide blend precursors. Adv Funct Mater 15(1), 69–75 (2005). https://doi.org/10.1002/adfm.200305155

    Article  CAS  Google Scholar 

  86. X. He, J.A. Lie, E. Sheridan, M.B. Hagg, Preparation and characterization of hollow fiber carbon membranes from cellulose acetate precursors. Ind Eng Chem Res 50(4), 2080–2087 (2011)

    Article  CAS  Google Scholar 

  87. Kiyono, M., Williams, P.J., Koros, W.J., 2010. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. J Membr Sci 3(59(1–2)):2–10

  88. J.A. Lie, M.B. Hagg, Carbon membranes from cellulose and metal loaded cellulose. Carbon 43(12), 2600–2607 (2005)

    Article  CAS  Google Scholar 

  89. K.M. Steel, W.J. Koros, Investigation of porosity of carbon materials and related effects on gas separation properties. Carbon 41(2), 253–266 (2003)

    Article  CAS  Google Scholar 

  90. H.H. Tseng, A.K. Itta, Modification of carbon molecular sieve membranestructure by self-assisted deposition carbon segment for gas separation. JMembrSci 389, 223–233 (2012)

    CAS  Google Scholar 

  91. M. Yoshimune, I. Fujiwara, K. Haraya, Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide)for gas separation. Carbon 45(3), 553–560 (2007)

    Article  CAS  Google Scholar 

  92. L. Xu, M. Rungta, M.K. Brayden, M.V. Martinez, B.A. Stears, G.A. Barbay, W.J. Koros, Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J Membr Sci 423–424, 314–323 (2012b)

    Article  CAS  Google Scholar 

  93. L. Xu, M. Rungta, W.J. Koros, Matrimid derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J Membr Sci 380(1–2), 138–147 (2011)

    Article  CAS  Google Scholar 

  94. D.Y. Koh, B.A. McCool, H.W. Deckman, R.P. Lively, Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 353(6301), 804–807 (2016)

    Article  CAS  Google Scholar 

  95. H. Richter, H. Voss, N. Kaltenborn, S. Kämnitz, A. Wollbrink, A. Feldhoff, J. Caro, S. Roitsch, I. Voigt, High-flux carbon molecular sieve membranes for gas separation. Angew Chem Int Ed 56(27), 7760–7763 (2017)

    Article  CAS  Google Scholar 

  96. IEA (2011) Technology roadmap carbon capture and storage in industrial applications 1–52

  97. M.C. Romano, R. Anantharaman, A. Arasto, D.C. Ozcan, H. Ahn, J.W. Dijkstra, D. Boavida, Application of advanced technologies for CO2 capture from industrial sources. Energy Procedia 37, 7176–7185 (2013)

    Article  CAS  Google Scholar 

  98. IPCC, in Prepared by Working Group III of the Intergovernmental Panel on Climate Change, ed. by B. Metz, O. Davidson, H. C. de Coninck, M. Loos, L. A. Meyer. IPCC special report on carbon dioxide capture and storage (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2005)

    Google Scholar 

  99. T. Brown, A. Gambhir, N. Florin, P. Fennell, Reducing CO2 emissions from heavy industry: a review of technologies and considerations for policy makers. Imperial College London, 1–32 (2012)

  100. M. Naranjo, D.T. Brownlow, A. Garza, CO2 capture and sequestration in the cement industry. Energy Procedia 4, 2716–2723 (2011)

    Article  Google Scholar 

  101. S. Joshi, P. Hadiya, M. Shah, A. Sircar, Techno-economical and experimental analysis of biodiesel production from used cooking oil. BioPhys Econ Resour Qual 4(1), 1–6 (2019). https://doi.org/10.1007/s41247-018-0050-7

    Article  Google Scholar 

  102. J.A. Lie, T. Vassbotn, M.B. Hägg, D. Grainger, T.J. Kim, T. Mejdell, Optimization of a membrane process for CO2 capture in the steelmaking industry. IJGGC 1, 309–317 (2007)

    CAS  Google Scholar 

  103. S. Roussanaly, R. Anantharaman, Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources. Chem Eng J 327, 618–628 (2017)

    Article  CAS  Google Scholar 

  104. D.M. D’Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49(35), 6058–6082 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Indus University and School of Technology, Pandit Deendayal Petroleum University for the permission to publish this research.

Availability of data and material

All relevant data and material are presented in the main paper.

Author information

Authors and Affiliations

Authors

Contributions

All the authors make substantial contribution in this manuscript. SS, MS, AS, and MS participated in drafting the manuscript. SS, MS, and AS wrote the main manuscript; all the authors discussed the results and implication on the manuscript at all stages.

Corresponding author

Correspondence to Manan Shah.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S., Shah, M., Shah, A. et al. Evolution in the membrane-based materials and comprehensive review on carbon capture and storage in industries. emergent mater. 3, 33–44 (2020). https://doi.org/10.1007/s42247-020-00069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00069-2

Navigation