Skip to main content

Advertisement

Log in

Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Foamy phase-change materials (FPCMs) based on linear low-density polyethylene (LLDPE) blended with 30 wt.% of paraffin wax (W) were successfully prepared for the first time. The advantage of these materials is their double functionality. First, they serve as standard thermal insulators, and second, the paraffin wax acts as a phase change component that absorbs thermal energy (the latent heat) during melting if the temperature increases above its melting point, which ensures better heat protection of buildings, for instance, against overheating. The density of the porous fabricated FPCM was 0.2898 g/cm3 with pore content 69 vol.% and gel portion achieved 27.5 wt.%. The thermal conductivity of the LLDPE/W foam was 0.09 W/m.K, whereas the thermal conductivity of the neat LLDPE foam prepared under the same conditions was 0.06 W/m.K, which caused a higher porosity of approximately 92 vol.%. The FPCM absorbed or released approximately 22–23 J/g during melting or cooling, respectively, and the material was stable under thermal and mechanical cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. United Nations Environment Programme, Buildings and Climate Change: Status, Challenges and Opportunities, United Nations Environment Programme, New York, (2007)

  2. L.R. Glicksman, Low density cellular plastics (Chapman & Hall, London, 1994)

    Google Scholar 

  3. Y. Lee, S. Choi, K. Choe, S. Kim, Physical and mechanical characteristics of polyurethane foam insulators blown by HFC, in: Proceedings of the International Offshore and Polar Engineering Conference, Seoul, (2005)

    Google Scholar 

  4. N. Sarier, E. Onder, Thermal characteristics of polyurethane foams incorporated with phase change materials. Thermochim. Acta 454, 90–98 (2007)

    Article  CAS  Google Scholar 

  5. M. You, X.X. Zhang, J.P. Wang, X.C. Wang, Polyurethane foam containing microencapsulated phase-change materials with styrene–divinybenzene co-polymer shells. J. Mater. Sci. 44, 3141–3147 (2009)

    Article  CAS  Google Scholar 

  6. M. You, X.X. Zhang, W. Li, X.C. Wang, Effects of MicroPCMs on the fabricationof microPCMs/polyurethane composite foams. Thermochim. Acta 472, 20–24 (2008)

    Article  CAS  Google Scholar 

  7. A.M. Borreguero, J.L. Valverde, T. Peijs, J.F. Rodríguez, M. Carmona, Characterization of rigid polyurethane foams containing microencapsulated Rubitherm RT27. Part I, J. Mater. Sci. 45, 4462–4469 (2010)

    Article  CAS  Google Scholar 

  8. A.M. Borreguero, J.F. Rodríguez, J.L. Valverde, R. Arevalo, T. Peijs, M. Carmona, Characterization of rigid polyurethane foams containing microencapsulated Rubitherm RT27: catalyst effect. Part II, J. Mater. Sci. 46, 347–356 (2011)

    Article  CAS  Google Scholar 

  9. A.M. Borreguero, J.F. Rodríguez, J.L. Valverde, T. Peijs, M. Carmona, Characterization of rigid polyurethane foams containing microencapsulted phase change materials: microcapsules type effect. J. Appl. Polym. Sci. 128, 582–590 (2013)

    Article  CAS  Google Scholar 

  10. A.A. Aydın, H. Okutan, Polyurethane rigid foam composites incorporated with fatty acid ester-based phase change material. Energy Convers. Manag. 68, 74–81 (2013)

    Article  Google Scholar 

  11. A. Serrano, A.M. Borreguero, I. Garrido, J.F. Rodríguez, M. Carmona, The role of microstructure on the mechanical properties of polyurethane foams containing thermoregulating microcapsules. Polym. Test. 60, 274–282 (2017)

    Article  CAS  Google Scholar 

  12. E.M. Beretta, W.S. Rossi, W. Kindlein, L. Roldo, T.L.A. de Campos, Engineering design: Eicosane microcapsules synthesis and application in polyurethane foams aiming to diminish wheelchair cushion effect on skin temperature. J. Eng. Sci. Technol 11, 1818–1834 (2016)

    Google Scholar 

  13. M.M. Kenisarin, Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol. Energy 107, 553–575 (2014)

    Article  CAS  Google Scholar 

  14. A.M. Khudhair, M.M. Farid, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 45, 263–275 (2004)

    Article  CAS  Google Scholar 

  15. S.M. Hasnain, Review on sustainable thermal energy storage technologies, part I: Heat storage materials and techniques. Energy Convers. Manag. 39, 1127–1138 (1998)

    Article  CAS  Google Scholar 

  16. B. Zalba, J.M. Marín, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283 (2003)

    Article  CAS  Google Scholar 

  17. M. Kenisarin, K. Mahkamov, Solar energy storage using phase change materials, Renew. Sustain.e Energ. Rev. 11 (2007) 1913–1965

    Article  CAS  Google Scholar 

  18. S. Peng, A. Fuchs, R.A. Wirtz, Polymeric phase change composites for thermal energy storage. J. Appl. Polym. Sci. 93, 1240–1251 (2004)

    Article  CAS  Google Scholar 

  19. H. Inaba, P. Tu, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf. 32, 307–312 (1997)

    Article  CAS  Google Scholar 

  20. A. Sari, Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: Preparation and thermal properties. Energy Convers. Manag. 45, 2033–2042 (2004)

    Article  CAS  Google Scholar 

  21. X.X. Zhang, Y.F. Fan, X.M. Tao, K.L. Yick, Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater. Chem. Phys. 88, 300–307 (2004)

    Article  CAS  Google Scholar 

  22. Y.F. Fan, X.X. Zhang, S.X. Wu, X.C. Wang, Thermal stability and permeability of microencapsulated n-octadecane and cyclohexane. Thermochim. Acta 429, 25–29 (2005)

    Article  CAS  Google Scholar 

  23. Y. Hong, G. Xin-shi, Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material. Sol. Energy Mater. Sol. Cells 64, 37–44 (2000)

    Article  CAS  Google Scholar 

  24. F. Chen, M.P. Wolcott, Miscibility studies of paraffin/polyethylene blends as form-stable phase change materials. Eur. Polym. J. 52, 44–52 (2014)

    Article  Google Scholar 

  25. I. Krupa, A.S. Luyt, Physical properties of blends of LLDPE and an oxidized paraffin wax. Polymer 42, 7285–7289 (2001)

    Article  CAS  Google Scholar 

  26. A. Waqas, Z.U. Din, Phase change material (PCM) storage for free cooling of buildings—A review. Renew. Sust. Energ. Rev. 18, 607–625 (2013)

    Article  Google Scholar 

  27. M.M. Kenisarin, K. Makhamov, High-temperature phase change materials for thermal energy storage. Renew. Sustain. Energ. Rev. 11, 1913–1965 (2007)

    Article  CAS  Google Scholar 

  28. L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties (Pergamon Press, Oxford, 1988)

    Google Scholar 

  29. N.C. Hilyard, A. Cunningham, Low density cellular plastics: physical basis of behaviour (Chapman and Hall, London, 1994)

    Book  Google Scholar 

  30. D. Klempner, C. Frisch (eds.), Polymeric foams (Munich, Hanser, 1991)

    Google Scholar 

  31. V.A. Kumar, K.A. Seeler, Cellular and microcellular materials, vol 53 (The American Society of Mechanical Engineers, New York, 1994)

    Google Scholar 

  32. I. Krupa, A. Popelka, P. Sobolciak, M. Mrlik, M.A. Ali AlMaadeed, “Insulating plastic foams with enhanced heat absorption capacity on the base of polyolefines and paraffin waxes”. USP 62,48, 936. Filling date: 04/05/2017

  33. I. Krupa, G. Miková, A.S. Luyt, Phase change materials based on low-density polyethylene/paraffin wax blends. Eur. Polym. J. 43, 4695–4705 (2007)

    Article  CAS  Google Scholar 

  34. T. Kuboki, Y.H. Lee, C.B. Park, M. Sain, Mechanical properties and foaming behavior of cellulose fiber reinforced high-density polyethylene composites. Polym. Eng. Sci. 49, 2179–2188 (2009)

    Article  CAS  Google Scholar 

  35. H. Inaba, P. Tu, Evaluation on thermophysical characteristics on shape stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf. 32, 307–312 (1997)

    Article  CAS  Google Scholar 

  36. C. Yang, L. Fischer, S. Marand, J. Worlitschek, Rigid polyurethane foams incorporated with phase change materials: A state-of-the-art review and future research pathways. Energ. Build. 87, 25–36 (2015)

    Article  Google Scholar 

  37. A. Genovese, G. Amarasinghe, M. Glewis, D. Mainwaring, R.A. Shanks, Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material. Thermochim. Acta 443, 235–244 (2006)

    Article  CAS  Google Scholar 

  38. I. Chodak, High modulus polyethylene fibres: Preparation, properties and modification by crosslinking. Prog. Polym. Sci. 23, 1409–1442 (1998)

    Article  CAS  Google Scholar 

  39. I. Krupa, A.S. Luyt, Thermal properties of uncross-linked and cross-linked LLDPE/wax blends. Polym. Degrad. Stab. 70, 111–117 (2000)

    Article  CAS  Google Scholar 

  40. J.V. Gulmine, L. Akcelrud, FTIR characterization of aged XLPE. Polym. Test. 25, 932–942 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible by the NPRP grant No: 4 - 465 - 2 - 173 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Krupa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popelka, A., Sobolčiak, P., Mrlík, M. et al. Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends. emergent mater. 1, 47–54 (2018). https://doi.org/10.1007/s42247-018-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0003-3

Keywords

Navigation