Skip to main content
Log in

A review of surface roughness measurements based on laser speckle method

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Surface roughness is commonly used to characterize material microstructure during processing, and accurate measurement of surface roughness is the premise and foundation of machining. Therefore, online non-destructive measurement of surface roughness based on the laser speckle method has become a hot issue in recent research. The improvements in surface roughness measurements based on the laser speckle method are systematically reviewed. Theory of speckle formation is introduced. The statistical properties of the speckle patterns including first-order statistical properties and second-order statistical properties are directly related to surface roughness. Surface roughness measurements based on the laser speckle method are roughly divided into the speckle contrast method, speckle correlation method, and fractal method. The three methods are described in detail, and an extensive comparison among all the methods is presented. The recent progresses and application of surface roughness measurements are reviewed. Finally, surface roughness measurements based on the laser speckle method are prospected and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Wang, D. Lv, H. Shi, X. Liu, R. Xin, in: C. Zhang, A. Asundi (Eds.), Proceedings of SPIE, 2nd International Conference on Photonics and Optical Engineering, Xi’an, China, 2017, 1025654.

  2. Y. Gong, J. Xu, R.C. Buchanan, Phys. Sci. Rev. 3 (2018) 20170057.

    Google Scholar 

  3. H. Yi, J. Liu, P. Ao, E. Lu, H. Zhang, Opt. Express 24 (2016) 17215–17233.

    Article  Google Scholar 

  4. Y. Quinsat, C. Tournier, Precision Eng. 36 (2012) 97–103.

    Article  Google Scholar 

  5. S.A. Whitehead, A. Shearer, D.C. Watts, N.H. Wilson, Dent. Mater. 15 (1999) 79–86.

    Article  Google Scholar 

  6. M. Yildirim, T. Okutucu-Ozyurt, Z. Dursunkaya, Opt. Laser Technol. 85 (2016) 19–29.

    Article  Google Scholar 

  7. Y. Gong, S.T. Misture, P. Gao, N.P. Mellott, J. Phys. Chem. C 120 (2016) 22358–22364.

    Article  Google Scholar 

  8. H. Fujii, T. Asakura, Opt. Commun. 11 (1974) 35–38.

    Article  Google Scholar 

  9. X. Du, Y. Wang, Chin. Opt. 13 (2020) 1–13.

    Google Scholar 

  10. J.W. Goodman, Statistical properties of laser speckle patterns, laser speckle & related phenomena, Springer, Berlin, Heidelberg, Germany, 1985.

  11. D. Briers, D.D. Duncan, E. Hirst, S.J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, O.B. Thompson, J. Biomed. Opt. 18 (2013) 066018.

    Article  Google Scholar 

  12. J. Senarathna, A. Rege, N. Li, N.V. Thakor, IEEE Rev. Biomed. Eng. 6 (2013) 99–100.

    Google Scholar 

  13. P. Prabhathan, C. Song, A. Haridas, G. Prasad, K. Chan, in: Proceedings of SPIE, Fifth International Conference on Optical and Photonics Engineering, Singapore, 2017, 1044912.

  14. D.R. Patel, M.B. Kiran, IOP Conf. Ser. Mater. Sci. Eng. 895 (2020) 012007.

    Google Scholar 

  15. S.I.M. Suhail, J.M. Ali, H.S. Jailani, M. Murugan, IOP Conf. Ser. Mater. Sci. Eng. 402 (2018) 012054.

    Google Scholar 

  16. F. Rodriguez, I. Cotto, S. Dasilva, P. Rey, K.V. Straeten, Proced. Manufact. 13 (2017) 519–525.

    Article  Google Scholar 

  17. N.A. Mansour, A.M. Abd-Rabou, A.E. Elmahdy, R.M. El-Agmy, M.M. El-Nicklawy, Optik 133 (2017) 140–149.

    Article  Google Scholar 

  18. M. Shimizu, H. Sawano, H. Yoshioka, H. Shinno, Proced. CIRP 33 (2015) 251–256.

    Article  Google Scholar 

  19. H.M. Escamilla, E.R. Méndez, V. Ruiz-Cortés, J.E.A. Landgrave, Opt. Commun. 313 (2014) 195–203.

    Article  Google Scholar 

  20. W. Jing, G. Jiang, J. Zhang, in: 9th IEEE International Conference on Microwave and Millimeter Wave Technology, IEEE, Beijing, China, 2016, pp. 94–96.

  21. D. Joseph, P. Bisnoi, SPIE 8699 (2013) 869911.

    Google Scholar 

  22. T. Jeyapoovan, M. Murugan, B.C. Bovas, in: World Congress on Information and Communication Technologies, IEEE, Trivandrum, India, 2013, pp. 378–382.

  23. A.S.G. Prasad, M.V. Matham, K.H.K. Chan, in: IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, IEEE, Sri Venkateshwara Coll Engn, Dept Elect & Commun Engn, Bengaluru, India, 2016, pp. 908–912.

  24. B.O. Asamoah, M. Roussey, K.E. Peiponen, Chemosphere 254 (2020) 126789.

    Article  Google Scholar 

  25. J.Y. Lee, S. Jeon, S.H. Jang, N.C. Park, Y.J. Kim, Displays 51 (2018) 30–35.

    Article  Google Scholar 

  26. A.L. Sampaio, D.C. Lobao, L.C.S. Nunes, P.A. M.L. Dos Santos, L. Silva, J.A.O. Huguenin, Opt. Laser. Eng. 49 (2010) 32–35.

    Article  Google Scholar 

  27. S. Patzelt, D. Stobener, A. Fischer, Appl. Opt. 58 (2019) 6436–6445.

    Article  Google Scholar 

  28. P. Satapathy, G. Nath, P. Mishra, Laser Phys. 31 (2021) 036001.

    Article  Google Scholar 

  29. X. Chen, C. Cheng, Z. Li, H. Zhang, M. Liu, M. Zhang, Opt. Commun. 329 (2014) 113–118.

    Article  Google Scholar 

  30. M.R.B. Dias, A.O. Castro, C.P. Dias, S.A. De Carvalho, J.A.O. Huguenin, L. Da Silva, Phys. A Statist. Mech. Appl. 534 (2019) 122175.

    Article  Google Scholar 

  31. H.C. Soares, J.B. Meireles, A.O. Castro, J.A.O. Huguenin, A.G.M. Schmidt, L. DaSilva, Phys. A Statist. Mech. Appl. 432 (2015) 1–8.

    Article  Google Scholar 

  32. M.M. El-Nicklawy, A.F. Hassan, A.E. Elmahdy, A.M. Abd-Rabou, E.A. Eesee, OPJ 9 (2019) 96165.

    Article  Google Scholar 

  33. N. Farid, H. Hussein, M. Bahrawi, MAPAN 30 (2015) 125–129.

    Article  Google Scholar 

  34. C. Cui, Z. Wang, X. Zhan, J. Wang, L. Liu, Z. Li, C. Wu, Appl. Opt. 59 (2020) 3630–3635.

    Article  Google Scholar 

  35. A.E. Gorjunov. P.V. Pavlov, N.V. Petrov, in: 1st International Scientific School on Methods of Digital Image Processing in Optics and Photonics, IOP, St Petersburg, Russia, 2014, pp. 536.

  36. F. Poller, L.M. Bilgeri, F.S. Bloise, M. Jakobi, S. Wang, J. Dong, A.W. Koch, in: 33rd Measurement Symposium, TM-Tech Mess, Friedrich Alexander Univ Erlangen Nurnberg, Lehrstuhl Fertigungsmesstechni, Erlangen, Germany, 2019. pp. 5.

  37. R.M. Haralick, K. Shanmugam, I.H. Dinstein, IEEE Trans. Sys. Man Cybernetics SMC-3 (1973) 610–621.

  38. Y. Lei, R. Lu, L. Lei, in: 4th International Seminar on Modern Cutting and Measurement Engineering, SPIE, Beijing, China, 2011, pp. 79971X.

  39. H. Huang, C. Chuang, IEEE Access 8 (2020) 192481–192492.

    Article  Google Scholar 

  40. D.R. Patel, M.B. Kiran, Mater. Today Proceed. 18 (2019) 3008–3016.

    Article  Google Scholar 

  41. A.B. Pradana, P. Prajitno, in: 6th International Conference on Instrumentation, Control, and Automation, IEEE, Institut Teknologi Bandung, Fac Ind Technol, Instrumentat & Control Resch, Bandung, Indonesia, 2019, pp. 100–105.

  42. F. Nirwana, P. Prajitno, S.K. Wijaya, in: International Conference on Electrical, Electronics and Information Engineering, IEEE, Denpasar, Indonesia, 2019, pp. 244–249.

  43. R.P. Dhiren, M.B. Kiran, V. Vakharia, Eng. Rep. 2 (2020) e12119.

    Article  Google Scholar 

  44. D.R. Patel, M.B. Kiran, Mater. Today Proceed. 44 (2021) 792–796.

    Article  Google Scholar 

  45. K. Joshi, B. Patil, Proced. Comput. Sci.167 (2020) 382–391.

    Article  Google Scholar 

  46. D. Youssef, H. El-Ghandoor, H. Kandel, J. El-Azab, S. Hassab-Elnaby, Mater. 10 (2017) 714.

    Article  Google Scholar 

  47. D. Youssef, S. Hassab-Elnaby, H. El-Ghandoor, Plos One 16 (2021) e0246395.

    Article  Google Scholar 

  48. S. Bharathi, M.M. Ratnam, IOP Conf. Ser. Mater. Sci. Eng. 530 (2019) 012022.

    Google Scholar 

  49. V. Kumar, C.P.S. Kumar, Measurement 152 (2020) 107297.

    Article  Google Scholar 

  50. R. Paterson, Index, Texture analysis in materials science: mathematical methods, United State, 1969.

  51. Y. Sun, Research on measuring method of surface roughness for speckle image, Nanjing University of Information Engineering, Nanjing, China, 2018.

    Google Scholar 

  52. H. Hu, Surface roughness measurement based on laser speckle image, Nanjing University of Information Engineering, Nanjing, China, 2015.

    Google Scholar 

  53. Y. Liu, Application research on surface roughness detection of workpiece based on laser speckle image, Shenyang Aerospace University, Shenyang, China, 2019.

    Google Scholar 

  54. L. Yang, R. Lu, Y. Shi, L. Lei, Z. Liu, SPIE 8916 (2014) 89160K.

    Google Scholar 

  55. J. Li, Q. Du, C. Sun, Pattern Recogn. 42 (2009) 2460–2469.

    Article  Google Scholar 

  56. H. Rabal, E. Grumel, N. Cap, L. Buffarini, M. Trivi, Opt. Laser. Eng. 106 (2018) 47–55.

    Article  Google Scholar 

  57. S. Soumya, M.S. Swapna, V. Raj, V. P.M. Pillai, S. Sankararaman, Eur. Phys. J. Plus 132 (2017) 551.

    Article  Google Scholar 

  58. S. Chen, Y. Zhang, H. Hu, Chinese Journal of Lasers 42 (2015) 0408002.

    Article  Google Scholar 

  59. D. Xu, Q. Yang, F. Dong, S. Krishnaswamy, JOE 9 (2018) 773–778.

    Google Scholar 

  60. M.R.B. Dias, D. Dornelas, W.F. Balthazar, J.A.O. Huguenin, L.D. Silva, Phys. A Statist. Mech. Appl. 486 (2017) 328–336.

    Article  Google Scholar 

  61. M.R.B. Dias, D. Dornelas, C.P. Dias, G.C. DeAlmeida, S.A. Carvalho, J.A.O. Huguenin, L.D. Silva, Opt. Laser Technol. 113 (2019) 27–34.

    Article  Google Scholar 

  62. R. Schurch, C. Gonzalez, P. Aguirre, M. Zuniga, I. Iddrissu, Calculating the fractal dimension from 3D images of electrical trees, in: The 20th International Symposium on High Voltage Engineering, Institution of Engineering and Technology, Buenos Aires, Argentina, 2017.

  63. A. Haridas, A. Crivoi, P. Prabhathan, K. Chan, V.M. Murukeshan, SPIE 10449 (2017) UNSP 104491T.

  64. J.W. Goodman, Speckle phenomena in optics: theory and applications, SPIE, US, 2007.

    Google Scholar 

  65. C. Liu, Q. Dong, H. Li, Z. Li, X. Li, C. Cheng, Opt. Express, 22 (2014) 1302–1312.

    Article  Google Scholar 

  66. B. Dhanasekar, N.K. Mohan, N.B. Bhaduri, B. Ramamoorthy, Precision Eng. 32 (2007) 196–206.

    Article  Google Scholar 

  67. S.L. Toh, C. Quan, K.C. Woo, C.J. Tay, H.M. Shang, Opt. Laser. Technol. 33 (2001) 427–434.

    Article  Google Scholar 

  68. B. Ruffing, JOSA 3 (1986) 1297–1304.

    Article  Google Scholar 

  69. G.S. Spagnolo, D. Paoletti, Opt. Commun. 132 (1996) 24–28.

    Article  Google Scholar 

  70. D. Leger, E. Mathieu, J.C. Perrin, Appl. Opt. 14 (1975) 872–877.

    Article  Google Scholar 

  71. U. Persson, J. Mater. Process. Technol. 180 (2006) 233–238.

    Article  Google Scholar 

  72. E. Baradit, C. Gatica, M. Yaez, J.C. Figueroa, C. Catalan, Opt. Laser. Eng. 128 (2020) 106009.

    Article  Google Scholar 

  73. K. Dev, P. Guru, H. Aswin, P. Prabhathan, M.V. Matham, SPIE 10449 (2017) UNSP104492W.

  74. P. Prabhathan, C. Song, A. Haridas, G. Prasad, K. Chan, SPIE 10449 (2017) UNSP1044912.

  75. S. Lake, J. Rew, C.D. Stacey, J.P. Sargent, SPIE 57 (2015) 513–517.

    Google Scholar 

  76. S.B. Felix, A. Laura, J. Martin, W.K. Alexander, Oldenbourg Wissenschaftsverlag 81 (2014) 289–295.

    Google Scholar 

  77. U. Persson, Wear 160 (1993) 221–225.

    Article  Google Scholar 

  78. J. Peters, A. Schoene, R.H. Bossi, D.M. Pepper, International Society for Optics and Photonics 3399 (1998) 45–56.

    Google Scholar 

  79. C. Joenathan, R. Torroba, R. Henao, Optik 112 (2001) 163–168.

    Article  Google Scholar 

  80. A.F. Fercher, U. Vry, W. Werner, Opt. Laser. Eng. 11 (1989) 271–279.

    Article  Google Scholar 

  81. T. Fricke-Begemann, G. Gulker, K.D. Hinsch, K. Wolff, Appl. Optics 38 (1999) 5948–5955.

    Article  Google Scholar 

  82. G.S. Spagnolo, L. Cozzella. F. Leccese, Measurement 58 (2014) 537–543.

  83. N. Werth, F. Salazar-Bloise, A. Koch, Rev. Sci. Instrum. 85 (2014) 015114.

    Article  Google Scholar 

  84. G. Parry, Opt. Commun. 12 (1974) 75–78.

    Article  Google Scholar 

  85. S. Patzelt, A. Ciossekm, P. Lehmann, A. Schoene, SPIE 3426 (1998) 124–133.

    Google Scholar 

  86. J. Huang, Z.H. Yang, Y.F. Ge, Adv. Mater. Res. 538–541 (2012) 256.

    Article  Google Scholar 

  87. P. Lehmann, Appl. Opt. 41 (2002) 2008–2014.

    Article  Google Scholar 

  88. J. Lettner, B.G. Zagar, Measure. Sci. Technol. 24 (2013) 115204.

    Google Scholar 

  89. T. Jeyapoovan, M. Murugan, B.C. Bovas, in: World Congress on Information and Communication Technologies, 2012, 13228760. https://doi.org/10.1109/WICT.2012.6409106.

  90. C.M. Klassen, J. Emmert, K.J. Daun, IOP Conf. Ser. Mater. Sci. Eng. 967 (2020) 012075.

    Google Scholar 

  91. G. Zhou, C. Mao, M. Tian, Y. Sun, in: 7th International Conference on Management, Education, Information and Control, Advances in Intelligent Systems Research, Shenyang, China, 2018, pp. 330–337.

  92. S. Patzelt, C. Stehno, D. Stöbener, G. Ströbel, A. Fischer, Oldenbourg Wissenschaftsverlag 84 (2017) 557–567.

    Google Scholar 

  93. S. Patzelt, C. Stehno, A. Tausendfreund, G. Stroebel, Oldenbourg Wissenschaftsverlag 83 (2016) 484–493.

    Google Scholar 

  94. A. Fischer, D. Stöbener, CIRP Annals 68 (2019) 523–526.

    Article  Google Scholar 

  95. R. Retheesh, B. Samuel, P. Radhakrishnan, V.P.N. Nampoori, A. Mujeeb, Journal of Aeronautics & Aerospace Engineering 5(2016) 1000157.

    Google Scholar 

  96. R. Balamurugan, R. Prakasam, Laser Eng. 47 (2020) 317–334.

    Google Scholar 

  97. R. Balamurugan, R. Prakasam, Laser Eng. 45 (2020) 325–335.

    Google Scholar 

  98. D. Youssef, J. El-Azab, H. Kandel, S. Hassab-Elnaby, H. El-Ghandoor, Optik 183 (2019) 55–64.

    Article  Google Scholar 

  99. A. Shulev, I. Roussev, S. Karpuzov, G. Stoilov, D. Ignatova, C.V. See, G. Mitov, J. Theoret. Appl. Mech. 46 (2016) 27–36.

    Article  Google Scholar 

  100. S. Sankararaman, Phys. Scripta 97 (2022) 025003.

    Article  Google Scholar 

  101. B. Kim, J. Seo, Appl. Surf. Sci. 359 (2015) 204–208.

    Article  Google Scholar 

  102. N.B. Bhagat, P.P. Padghan, R. Kesarwani, A. Khare, K.M. Alti, Mater. Today Proceed. 50 (2022) 123–128.

    Article  Google Scholar 

  103. P. Padghan, V. Pande, P. Ingle, S. Sen, A. Gade, K. Alti, AIP Conf. Proceed. 2100 (2019) 020062.

    Google Scholar 

  104. Y. Fuh. C. Wang, C. Huang, P. Chen, Z. Lai, Optik 127 (2016) 1349–1353.

  105. J. Pladellorens, O. Cusola, J. Caum, S. Royo, A. Tosas, A. Pino, Appita 67 (2014) 140–144.

    Google Scholar 

  106. A. Pino, J. Pladellorens, Opt. Eng. 7432 (2011) 093605.

    Article  Google Scholar 

  107. P. Singh, G. Nath, Laser Phys. 31 (2021) 076002.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan (Grant No. 2020YFB1713600), Xinjiang Science and Technology Assistance Program (Grant No. 2021E02060), the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-20-105A1 and FRF-TP-19-002A3), National Natural Science Foundation of China (Grant No. 51975043), and the China Postdoctoral Science Foundation (Grant No. 2021M69035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xu.

Ethics declarations

Conflict of interest

No author has reported a potential conflict of interest relevant to this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Mq., Xu, D., Li, Sy. et al. A review of surface roughness measurements based on laser speckle method. J. Iron Steel Res. Int. 30, 1897–1915 (2023). https://doi.org/10.1007/s42243-023-00930-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00930-8

Keywords

Navigation