Skip to main content
Log in

Three-dimensional numerical simulation of flow and splash behavior in an oxygen coal combustion melting and separating furnace

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The change of bubbles and the position of the tuyere in an oxygen coal combustion melting and separating furnace affect the flow and splash behavior of the molten pool. To analyze this problem further, a three-dimensional numerical simulation method was used to explore the behavior and change of the flow field inside the molten pool during double-row tuyere injection. In addition, the arrangement of the tuyere was changed for a more detailed understanding of the internal phase distribution and splashing in a molten pool. The results indicated that under three-dimensional numerical simulation conditions, bubbles rise after leaving the tuyere and break on the surface of the molten pool, which results in certain fluctuations in the nearby melt. During the injection process of the tuyere, the meteorological accumulation in the middle part of the molten pool formed part of the foam slag because of the influence of surface tension. When the layout of the upper and lower exhaust tuyeres was changed from staggered to symmetrical, or when the spacing of the upper and lower exhaust tuyeres changed, it had an effect on the phase distribution and splash behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. F. Li, M.S. Chu, J. Tang, Z.G. Liu, Y.S. Zhou, Hebei Metallurgy (2019) No. 10, 8−15.

    Google Scholar 

  2. X.G. Zhang, L.J. Jia, Metallurgy and Materials 39 (2019) No. 4, 90−91.

    Google Scholar 

  3. J.S. Tao, Y.C. Hong, World Metals 2020-01-07 (B02).

  4. A. Yasen, Research on reducing the cost of smelting high-silicon and high-phosphorus COREX molten iron in converter, University of Science and Technology Beijing, Beijing, China, 2019.

    Google Scholar 

  5. J.J. Gao, Pre-reduction of vanadium−titanium magnetite rotary kiln-basic research on full oxygen bath smelting, Central Iron and Steel Research Institute, Beijing, China, 2018.

  6. J.J. Gao, X.Y. Wan, Y.H. Qi, F. Wang, J. Iron Steel Res. 30 (2018) 91−96.

    Google Scholar 

  7. F.H. Liu, S.B. Wang, J.X. Xu, H.T. Wang, H. Wang, J. Kunming Univ. Sci. Technol. (Nat. Sci. Ed.) 40 (2015) No. 1, 60−66.

    Google Scholar 

  8. M.P. Davis, R.J. Dry, M.P. Schwarz, in: Proceedings of the ISS Technology Conference, Indianapolis, USA, 2003, pp. 2−8.

  9. A. Ahmadpour, S.M.A. Noori Rahim Abadi, R. Kouhikamali, Int. J. Multiphase Flow 79 (2016) 31−49.

    Article  MathSciNet  Google Scholar 

  10. ] P. Buliński, J. Smolka, S. Golak, R. Przyłucki, M. Palacz, G. Siwiec, B. Melka, L. Blacha, Int. J. Heat Mass Transfer 126 (2018) 980−992.

    Article  Google Scholar 

  11. K. Fukagata, N. Kasagi, P. Ua-arayaporn, T. Himeno, Int. J. Heat Fluid Flow 28 (2007) 72−82.

    Article  Google Scholar 

  12. Y.Z. Hou, G.B. Zhang, Y.Z. Qin, Q. Du, K. Jiao, Int. J. Hydrogen Energy 42 (2017) 3250−3258.

    Article  Google Scholar 

  13. W.C. Liu, Numerical simulation of gas−liquid two-phase flow in a smoke furnace, Central South University, Changsha, China, 2014.

  14. H.C. Chuang, J.H. Kuo, C.C. Huang, S.H. Liu, W.S. Hwang, ISIJ Int. 46 (2006) 1158−1164.

    Article  Google Scholar 

  15. D.Y. Yin, W.L. Cheng, J.J. Xie, K.F. Feng, B. Wang, J.Y. Zhang, S.B. Zheng, X. Hong, Chin. J. Process Eng. 10 (2010) 1066−1070.

    Google Scholar 

  16. H.J. Yan, F.K. Liu, Z.Y. Zhang, Q. Gao, L. Liu, Z.X. Cui, D.B. Shen, Chin. J. Nonferrous Met. 22 (2012) 2393−2400.

    Article  Google Scholar 

  17. L.Q. Deng, M.M. Li, Q. Li, Z.S. Zou, J. Mater. Metall. 15 (2016) 25−32.

    Google Scholar 

  18. P. Yan, H.B. Jin, G.X. He, X.Y. Guo, L. Ma, S.H. Yang, R.Y. Zhang, Chem. Eng. Res. Des. 154 (2020) 47−59.

    Article  Google Scholar 

  19. K.J. Vachaparambil, K.E. Einarsrud, Appl. Math. Modell. 81 (2020) 690−710.

    Article  Google Scholar 

  20. L.Y. Wu, L.B. Liu, X.T. Han, Q.W. Li, W.B. Yang, Chin. Phys. B 28 (2019) 104702.

    Article  Google Scholar 

  21. M.Y. Zhu, Z.Z. Cai, H.Q. Yu, J. Iron Steel Res. Int. 20 (2013) No. 3, 6−17.

    Article  Google Scholar 

  22. H.Q. Yu, M.Y. Zhu, ISIJ Int. 48 (2008) 584−591.

    Article  Google Scholar 

  23. J. Anagnostopoulos, G. Bergeles, Metall. Mater. Trans. B 30 (1999) 1095−1105.

    Article  Google Scholar 

  24. B.E. Launder, D.B. Spalding, Comput. Methods Appl. Mech. Engrg. 3 (1974) 269−289.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFB0603800 and 2017YFB0603802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Shen, Yz., Kong, Z. et al. Three-dimensional numerical simulation of flow and splash behavior in an oxygen coal combustion melting and separating furnace. J. Iron Steel Res. Int. 28, 965–977 (2021). https://doi.org/10.1007/s42243-021-00615-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00615-0

Keywords

Navigation