Skip to main content
Log in

Physical and computational study of a novel submerged entry nozzle design for twin-roll casting process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

With significant emphasis on reducing the turbulence in the bath and the need for effective distribution of metal along the roller length in twin-roll casting, a novel submerged entry nozzle (SEN) configuration with two “gap regions” was provided. The “gap regions” of the new SEN divide the bath into two parts, the “upper melt bath” (casting region) and the “lower melt bath” (rolling region). The newly designed SEN was tested by using both full-scale water modeling experiments and numerical simulations. Results demonstrated that the turbulence could only be found near the rotating roller surfaces. The “gap regions” can make the near-wall flows more uniform. They can also prevent the instabilities in the “upper melt bath” to be transferred to the “lower melt bath”, thus improving the stability of the process. Moreover, the novel SEN can stabilize the meniscus where the initial solidification occurs. This is achieved by increasing the SEN immersion depth, which in turn, can enlarge the volume of the upper part of the bath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

C ε 1 :

Constant, 1.44

C ε 2 :

Constant, 1.92

C ε 3 :

Constant, 0.8

C μ :

Constant, 0.09

D ij :

Turbulent transport

Fr :

Froude number of prototype

Fr′:

Froude number of model

g :

Gravity acceleration

G ij :

Stress production

h :

Bath depth

h m :

Meniscus height

k :

Turbulence kinetic energy

L :

Characteristic length of real caster

L′:

Characteristic length of model

p :

Pressure

p ii :

Pressure tensor

\(\overline{p}\) :

Mean pressure

p static :

Static pressure at each point of top free surface

\(\overline{p}_{\text{static}}\) :

Area-weighted average value of static pressure over entire top free surface

Re :

Reynolds number

Re′:

Reynolds number of model

t :

Time

t tracer :

Tracer injection time

u :

Characteristic velocity of prototype

u′:

Characteristic velocity of model

u gap :

Velocities of flows passing through roller gap

u :

Fluctuating velocity

U :

Time-averaged velocity

x :

Coordinate

δ ik, δ jk :

Kronecker delta

ε :

Turbulent dissipation rate

ε ij :

Dissipation tensor

μ :

Dynamic viscosity

μ′:

Dynamic viscosity of model

μ tur :

Turbulent viscosity

ρ :

Density

ρ′:

Density of water

ρ melt :

Melt density

ρ gas :

Gas density

σ ε :

Constant, 1.0

\(\overline{ \tau}_{ik}\) :

Reynolds averaged fluid extra stress tensor

φ ij :

Pressure-strain term

i, j, k :

Coordinate

t :

Time

References

  1. H. Bessemer, Improvement in the manufacture of iron and steel, USA, 39053, 1865.

  2. M.Y. Zhu, Iron and Steel 54 (2019) No. 8, 21–36.

  3. M.H. Sun, Z.W. Zhu, L.K. Zheng, C.X. Zheng, F.S. Du, Iron and Steel 55 (2020) No. 4, 60–67.

  4. C.G. Li, Y.X. Zhang, Y. Wang, F. Fang, G.M. Cao, J. Iron Steel Res. 31 (2019) 202–206.

  5. H.Y. Song, H.T. Liu, G.D. Wang, Journal of Northeastern University 41 (2020) 723–728.

  6. H.Y. Shi, Q.X. Feng, H. Dong, Y.X. Shi, D.S. Zhou, H.L. Li, Shanghai Metals 42 (2020) No. 6, 51–57.

  7. H. Bessemer, J. Met. 17 (1965) 1189–1191.

  8. D. Bouchard, F.G. Hamel, S.F. Turcotte, J.P. Nadeau, ISIJ Int. 41 (2001) 1465–1472.

  9. C. Ohler, H.J. Odenthal, H. Pfeifer, Steel Res. Int. 74 (2003) 739–747.

  10. B. Wang, J.Y. Zhang, J.F. Fan, S.L. Zhao, Y. Fang, S.L. An, J. Iron Steel Res. Int. 13 (2006) No. 1, 14–17.

  11. B. Wang, J.Y. Zhang, W.D. Zhang, S.B. Ren, J.F. Fan, S.L. An, K.C. Chou, Steel Res. Int. 82 (2011) 819–826.

  12. Z.Y. Liu, W.D. Zhang, B. Wang, G.X. Wu, F. Ruan, C.T. Liu, J.Y. Zhang, Ironmak. Steelmak. 39 (2012) 614–621.

  13. A. Pelss, A. Rückert, H. Pfeifer, Steel Res. Int. 86 (2015) 716–723.

  14. M.G. Xu, M.Y. Zhu, G.D. Wang, Metall. Mater. Trans. B 46 (2015) 1510–1519.

  15. M.G. Xu, Z.Y. Li, Z.H. Wang, M.Y. Zhu, Metall. Mater. Trans. B 48 (2017) 471–487.

  16. N. Zapuskalov, ISIJ Int. 43 (2003) 1115–1127.

  17. M.Y. Zhu, M.G. Xu, X.F. Jia, Z.H. Wang, A novel submerged entry nozzle for twin-roll casting, China, ZL 201510890292.5, 2015.

  18. B. Andersson, R. Andersson, L. Håkansson, M. Mortensen, R. Sudiyo, B.V. Wachem, Computational fluid dynamics for engineers, Cambridge University Press, London, UK, 2011.

  19. ANSYS Inc., FLUENT 14.5-Manual, Lebanon, NH, USA, 2012.

  20. R. Wechsler, P. Campbell, in: J. Herbertson (Eds.), Manfred Wolf Symposium, Cambridge University Press, Zurich, Switzerland, 2002, pp. 70–79.

Download references

Acknowledgements

The authors would like to thank the financial support from the Fundamental Research Funds for the Central Universities (N130602005), the research grant of Shandong University of Technology (4041/419099), and the Natural Science Foundation of Shandong Province (ZR2020ME111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian-guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Mg., Zhu, My. Physical and computational study of a novel submerged entry nozzle design for twin-roll casting process. J. Iron Steel Res. Int. 28, 1390–1399 (2021). https://doi.org/10.1007/s42243-021-00574-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00574-6

Keywords

Navigation