Skip to main content
Log in

Effects of continuous cooling rate on morphology of granular bainite in pipeline steels

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The morphology and characteristics of granular bainite (GB) in pipeline steels at different continuous cooling rates were investigated by scanning electron microscopy, transmission electron microscopy and electron back-scattered diffraction (EBSD). The results show that the morphology of ferrite matrix in GB turned from the lath sheaf structure into the nearly equiaxed large grain with the cooling rate decreasing from high (60 °C/s) to low (5–10 °C/s). At the medium cooling rate (20–40 °C/s), GB consisted of the irregular ferrite matrix, the granular martensite/austenite (M/A) constituents and abundant substructures inside. The formation of the irregular ferrite and substructure was attributed to the high-temperature recovery which occurred at relatively high-temperature stage before phase transformation. The granular morphology of M/A constituents was formed from the carbon-rich triple junctions which were produced by the multidirectional substructure interfaces converged with each other. Particularly, some martensite in M/A constituents was misoriented from the adjacent ferrite by very small misorientation angle, which could be characterized by the mean band contrast function of EBSD qualitatively or semiquantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.X. Qiao, Y.C. Liu, L.M. Yu, Z.M. Gao, J. Alloy. Compd. 475 (2009) 560–564.

    Article  Google Scholar 

  2. G. Krauss, S.W. Thompson, ISIJ Int. 35 (1995) 937–945.

    Article  Google Scholar 

  3. E.V. Morales, R.A. Silva, I.S. Bott, S. Paciornik, Mater. Sci. Eng. A 585 (2013) 253–260.

    Article  Google Scholar 

  4. Q.B. Yu, G.S. Duan, Y. Sun, X.P. Zhao, B. Wang, Iron and Steel 43 (2008) No. 7, 68–71.

    Google Scholar 

  5. C.H. Lee, H.K.D.H. Bhadeshia, H.C. Lee, Mater. Sci. Eng. A 360 (2003) 249–257.

    Article  Google Scholar 

  6. R.Y. Zhang, J.D. Boyd, Metall. Mater. Trans. A 41 (2010) 1448–1459.

    Article  Google Scholar 

  7. C.J. Cheng, X.M. Wang, Z.J. Zhou, X. Liang, C.L. Miao, X.L. He, Acta Metall. Sin. 44 (2008) 287–291.

    Google Scholar 

  8. Y.T. Zhao, C.J. Shang, S.W. Yang, X.M. Wang, X.L. He, Mater. Sci. Eng. A 433 (2006) 169–174.

    Article  Google Scholar 

  9. W. Wang, Y. Shan, K. Yang, Mater. Sci. Eng. A 502 (2009) 38–44.

    Article  Google Scholar 

  10. M.A. Smirnov, I.Y. Pyshmintsev, A.N. Boryakova, Metallurgist 54 (2010) 7–8.

    Google Scholar 

  11. J.P. Wang, Z.G. Yang, B.Z. Bai, H.S. Fang, Mater. Sci. Eng. A 369 (2004) 112–118.

    Article  Google Scholar 

  12. W. Wang, W. Yan, L. Zhu, P. Hu, Y. Shan, K. Yang, Mater. Des. 30 (2009) 3436–3443.

    Article  Google Scholar 

  13. L. Fan, D.H. Zhou, T.L. Wang, S.R. Li, Q.F. Wang, Mater. Sci. Eng. A 590 (2014) 224–231.

    Article  Google Scholar 

  14. M.C. Zhao, K. Yang, F.R. Xiao, Y.Y. Shan, Mater. Sci. Eng. A 355 (2003) 126–136.

    Article  Google Scholar 

  15. H.J. Jun, J.S. Kang, D.H. Seo, K.B. Kang, C.G. Park, Mater. Sci. Eng. A 422 (2006) 157–162.

    Article  Google Scholar 

  16. S.W. Thompso, D.J. Colvin, G. Krauss, Metall. Mater. Trans. A 27 (1996) 1557–1571.

    Article  Google Scholar 

  17. F.G. Caballero, H. Roelofs, S. Hasler, C. Capdevila, J. Chao, J. Cornide, C. Garcia-Mateo, Mater. Sci. Technol. 28 (2012) 95–102.

    Article  Google Scholar 

  18. S. Zajac, V. Schwinn, K.H. Tacke, Mater. Sci. Forum 500–501 (2005) 387–394.

    Article  Google Scholar 

  19. Y.M. Kim, H. Lee, N.J. Kim, Mater. Sci. Eng. A 478 (2008) 361–370.

    Article  Google Scholar 

  20. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, R.D.K. Misra, Mater. Sci. Eng. A 585 (2013) 197–204.

    Article  Google Scholar 

  21. F.R. Xiao, B. Liao, G.Y. Qiao, C.L. Zhang, Y.Y. Shan, Y. Zhong, K. Yang, Multidiscip. Model. Mater. Struct. 2 (2006) 389–410.

    Article  Google Scholar 

  22. Z.G. Yang, H.S. Fang, Curr. Opin. Solid State Mater. Sci. 9 (2005) 277–286.

    Article  Google Scholar 

  23. H.S. Fang, C. Feng, Y.K. Zhang, Z.G. Tang, B.Z. Bai, J. Iron Steel Res. Int. 15 (2008) No. 6, 1–9.

    Article  Google Scholar 

  24. P. Cizek, Acta Mater. 106 (2016) 129–143.

    Article  Google Scholar 

  25. D.P. Cheprasov, V.V. Svishchenko, E.V. Kozlov, A.A. Ivanaiskii, Met. Sci. Heat Treat. 5 (2006) 3–7.

    Google Scholar 

  26. M. Mohammadijoo, J. Valloton, L. Collins, H. Henein, D.G. Ivey, Mater. Charact. 142 (2018) 321–331.

    Article  Google Scholar 

  27. N. Huda, A. R.H. Midawi, J Gianetto, R. Lazor, A.P. Gerlich, Mater. Sci. Eng. A 662 (2016) 481–491.

    Article  Google Scholar 

  28. C.M. Wang, X.F. Wu, J. Liu, N.A. Xu, Mater. Sci. Eng. A 438–440 (2006) 267–271.

    Article  Google Scholar 

  29. B.Z. Li, C.S. Li, X. Jin, J. Zhang, J. Iron Steel Res. Int. (2019-3-12). https://doi.org/10.1007/s42243-019-00244-8.

  30. B. Wang, J. Lian, Mater. Sci. Eng. A 592 (2014) 50–56.

    Article  Google Scholar 

  31. Y.W. Chen, Y.T. Tsai, P.Y. Tung, S.P. Tsai, C.Y. Chen, S.H. Wang, J.R. Yang, Mater. Charact. 139 (2018) 49–58.

    Article  Google Scholar 

  32. S.G. Lee, S.S. Sohn, B. Kim, W.G. Kim, K.K. Um, S. Lee, Mater. Sci. Eng. A 10 (2018) 1–21.

    Google Scholar 

  33. H. Zhao, B.P. Wynne, E.J. Palmiere, Mater. Charact. 123 (2017) 339–348.

    Article  Google Scholar 

  34. J.Y. Kang, D.H. Kim, S. Baik, T.H. Ahn, Y.W. Kim, H.N. Han, K.H. Oh, H.C. Lee, S.H. Han, ISIJ Int. 51 (2011) 130–136.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB0304900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ba Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Sj., Li, B., Liu, Qy. et al. Effects of continuous cooling rate on morphology of granular bainite in pipeline steels. J. Iron Steel Res. Int. 27, 681–690 (2020). https://doi.org/10.1007/s42243-019-00346-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00346-3

Keywords

Navigation