Skip to main content
Log in

Carbides precipitation and their evolution of Cr15Co10Mo5-alloyed heat-resistant bearing steel after tempering at different temperatures

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The carbides precipitation and their evolution at elevated tempering temperature in Cr15Co10Mo5-alloyed heat-resistant bearing steel were investigated by means of the transmission electron microscope. The results show that there is no carbide precipitated from the martensitic matrix when the sample was tempered at 480 °C. However, when the sample was tempered at 540 °C, a large number of stable spherical M6C carbides precipitated in the test steel. Nevertheless, there are three types of carbides precipitated from the matrix including M6C, M2C and M23C6 carbides when the tempering temperature reached 600 °C. The mechanical properties also present a correlation with the evolution of carbides during tempering at different temperatures. This indicates that the strengthening mechanism of the steel is mainly attributed to the precipitation of carbides and their evolution, including the morphologies and types of carbides at different temperatures. In addition, the austenitic layers with a thickness of about 30 nm have been obtained between the martensite laths after tempering at 600 °C. The austenitic layers will produce transformation-induced plasticity effects to improve the toughness of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Kadin, M. Gamba, M. Faid, J. Alloy. Compd. 705 (2017) 475–485.

    Article  Google Scholar 

  2. V. A. Dub, A. Rodin, B. Bokstein, S, Belikov, P. Koziov, I. Schepkin, V.S. Dub, Mater. Lett. 215 (2018) 134–136.

    Article  Google Scholar 

  3. S. Yoshida, T. Okumura, H. Kita, J. Takahashi, K. Ushioda, Mater. Trans. 55 (2014) 899–906.

    Article  Google Scholar 

  4. J. Guo, L. Ai, T. Wang, Y. Feng, D. Wan, Q. Yang, Mater. Sci. Eng. A 715 (2018) 359–369.

    Article  Google Scholar 

  5. J. Chen, H. Liu, Z. Pan, K. Shi, H. Zhang, J. Li, Mater. Sci. Eng. A 622 (2015) 153–159.

    Article  Google Scholar 

  6. T. Wen, X. Hu, Y. Song, D. Yan, L. Rong, Mater. Sci. Eng. A 588 (2013) 201–207.

    Article  Google Scholar 

  7. S.P. Hong, S.I. Kim, T.Y. Ahn, S.T. Hong, Y.W. Kim, Mater. Charact. 115 (2016) 8–13.

    Article  Google Scholar 

  8. E. Bettini, T. Eriksson, M. Boström, C. Leygraf, J. Pan, Electrochim. Acta 56 (2011) 9413–9419.

    Article  Google Scholar 

  9. C.H. Yoo, H.M. Lee, J.W. Chan, J.W. Morris Jr, Metall. Mater. Trans. A 27 (1996) 3466–3472.

    Article  Google Scholar 

  10. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Mater. Des. 87 (2015) 501–506.

    Article  Google Scholar 

  11. X. Luo, T. Ebel, F. Pyczak, W. Limberg, Y. Lin, Mater. Lett. 193 (2017) 295–298.

    Article  Google Scholar 

  12. D.J. Dyson, S.R. Keown, Acta Metall. 17 (1969) 1095–1107.

    Article  Google Scholar 

  13. J. Guan, L. Wang, Z. Zhang, X. Shi, X. Ma, Tribol. Int. 119 (2018) 165–174.

    Article  Google Scholar 

  14. Z.X. Xia, C. Zhang, H. Lan, Z.Q. Liu, Z.G. Yang, Mater. Lett. 65 (2011) 937–939.

    Article  Google Scholar 

  15. T. Hiroyuki, J. Iron Steel Res. Int. 17 (2010) No. 5, 74–78.

    Article  Google Scholar 

  16. L. Chen, J. Pei, F. Li, Y. Zhang, M. Wang, X. Ma, Metall. Mater. Trans. A 47 (2016) 5662–5669.

    Article  Google Scholar 

  17. H.F. Fischmeister, S. Karagöz, H.O. Andrén, Acta Metall. 36 (1988) 817–825.

    Article  Google Scholar 

  18. J.W. Schinkel, P.L.F. Rademakers, B.R. Drenth, C.P. Scheepens, J. Heat Treat. 3 (1984) 237–248.

    Article  Google Scholar 

  19. T.P. Hou, K.M. Wu, Acta Mater. 61 (2013) 2016–2024.

    Article  Google Scholar 

  20. M.L. Zhu, D.Q. Wang, F.Z. Xuan, Mater. Charact. 87 (2014) 45–61.

    Article  Google Scholar 

  21. J. Chen, W. Mo, P. Wang, S. Lu, Acta Metall. Sin. 48 (2012) 1186–1193.

    Article  Google Scholar 

  22. W. Gui, H. Zhang, M. Yang, T. Jin, X. Sun, Q. Zheng, J. Alloy. Compd. 695 (2017) 1271–1278.

    Article  Google Scholar 

  23. S. Bukola, B. Merzougui, S.E. Creager, M. Qamar, L.R. Pederson, M.N. Noui-Mehidi, Int. J. Hydrogen Energy 41 (2016) 22899–22912.

    Article  Google Scholar 

  24. C.C. Wang, C. Zhang, Z.G. Yang, J. Su, Q.Y. Weng, Acta Metall. Sin. 53 (2017) 175–182.

    Google Scholar 

  25. C. Wang, C. Zhang, Z. Yang, Micron 67 (2014) 112–116.

    Article  Google Scholar 

  26. Y. Zhang, D. Zhan, X. Qi, Z. Jiang, Mater. Charact. 144 (2018) 393–399.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (Grant No. 51761022) and Fund for Testing and Analyzing of Kunming University of Science and Technology (Grant Nos. 2016T20110167 and 2017M20162130021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-hong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Mg., Lü, Xy., Li, Dh. et al. Carbides precipitation and their evolution of Cr15Co10Mo5-alloyed heat-resistant bearing steel after tempering at different temperatures. J. Iron Steel Res. Int. 26, 1096–1105 (2019). https://doi.org/10.1007/s42243-019-00286-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00286-y

Keywords

Navigation