Skip to main content
Log in

Control of vortex-induced vibrations of the cylinder by using split-ter plates immersed in the cylinder wake at low Reynolds number

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The vortex-induced vibrations of a cylinder with two plates symmetrically distributed along the centerline of the wake are studied by using the fluid-structure interaction simulations on the Arbitrary Lagrangian-Eulerian method. In this study, the different geo-metrical distribution parameters of the splitter plates and inflow velocities are taken into account. The physical mechanisms of vortex-induced vibration of the cylinder with symmetrical plates are revealed from the cylinder amplitude, hydrodynamic force characteristics, vortex shedding frequency, and flow pattern modification. The results show that the dynamic interaction between the vortex shed from the oscillation cylinder and plates is responsible for the wake stabilization mechanism, and the stable wake and the dynamic response reduction of the main cylinder can be achieved at a wide range of reduced velocities by placing sym-metrical sheets at suitable locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roshko A. On the wake and drag of bluff bodies [J]. Journal of the Aeronautical Sciences, 1955, 22(2): 124–132.

    Article  Google Scholar 

  2. Strykowski P. J., Sreenivasan K. R. On the formation and sup-pression of vortex ‘shedding’ at low Reynolds numbers [J]. Journal of Fluid Mechanics, 1990, 218: 71–107.

    Article  Google Scholar 

  3. Kuo C. H., Chiou L. C., Chen C. C. Wake flow pattern modified by small control cylinders at low Reynolds number [J]. Journal of Fluids and Structures, 2007, 23(6): 938–956.

    Article  Google Scholar 

  4. Singh S. P., Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes [J]. Journal of Fluids and Structures, 2005, 20(8): 1085–1104.

    Article  Google Scholar 

  5. Prasanth T. K., Mittal S. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers [J]. Journal of Fluid Mechanics, 2008, 594: 463–491.

    Article  Google Scholar 

  6. Bao Y., Tao J. Active control of a cylinder wake flow by using a streamwise oscillating foil [J]. Physics of Fluids, 2013, 25(5): 053601.

    Article  MathSciNet  Google Scholar 

  7. Korkischko I., Meneghini J. R. Suppression of vortex-induced vibration using moving surface boundary-layer control [J]. Journal of Fluids and Structures, 2012, 34: 259–270.

    Article  Google Scholar 

  8. Sánchez-Sanz M., Velazquez A. Passive control of vortex induced vibration in internal flow using body shape [J]. Journal of Fluids and Structures, 2011, 27(7): 976–985.

    Article  Google Scholar 

  9. Quen L. K., Abu A., Kato N. et al. Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser [J]. Applied Ocean Research, 2014, 44: 82–91.

    Article  Google Scholar 

  10. Assi G. R. S., Bearman P. W., Kitney N. Low drag solutions for suppressing vortex-induced vibration of circular cylinders [J]. Journal of Fluids and Structures, 2009, 25(4): 666–675.

    Article  Google Scholar 

  11. Zhu H., Yao J., Ma Y. et al. Simultaneous CFD evaluation of VIV suppression using smaller control cylinders [J]. Journal of Fluids and Structures, 2015, 57: 66–80.

    Article  Google Scholar 

  12. Roshko A. On the development of turbulent wakes from vortex streets [R]. NACA Report 1191, Washington DC, USA: National Advisory Committee for Aeronautics, 1954.

    Google Scholar 

  13. Kuo C. H., Chiou L. C., Chen C. C. Wake flow pattern modified by small control cylinders at low Reynolds number [J]. Journal of Fluids and Structures, 2007, 23(6): 938–956.

    Article  Google Scholar 

  14. Parezanović V., Cadot O. Experimental sensitivity analysis of the global properties of a two-dimensional turbulent wake [J]. Journal of Fluid Mechanics, 2012, 693: 115–149.

    Article  Google Scholar 

  15. Jiménez-González J. I., Huera-Huarte F. J. Experimental sensitivity of vortex-induced vibrations to localized wake perturbations [J]. Journal of Fluids and Structures, 2017, 74: 53–63.

    Article  Google Scholar 

  16. Akilli H., Sahin B., Tumen N. F. Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate [J]. Flow Measurement and Instrumentation, 2005, 16(4): 211–219.

    Article  Google Scholar 

  17. Kawai H. Vortex induced vibration of circular cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46: 605–610.

    Article  Google Scholar 

  18. Zhu H., Yao J. Numerical evaluation of passive control of VIV by small control rods [J]. Applied Ocean Research, 2015, 51: 93–116.

    Article  Google Scholar 

  19. Schulz K. W., Kallinderis Y. Unsteady flow structure interaction for incompressible flows using deformable hybrid grids [J]. Journal of Computational Physics, 1998, 143(2): 569–597.

    Article  Google Scholar 

  20. Huang W., Ren Y., Russell R. D. Moving mesh methods based on moving mesh partial differential equations [J]. Journal of Computational Physics, 1994, 113(2): 279–290.

    Article  MathSciNet  Google Scholar 

  21. Chen Z., Shu C., Tan D. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows [J]. Physics of Fluids, 2018, 30(5): 053601.

    Article  Google Scholar 

  22. Demirdžić I., Perić M. Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries [J]. International Journal for Numerical Methods in Fluids, 1990, 10(7): 771–790.

    Article  Google Scholar 

  23. Jasak H. Dynamic mesh handling in OpenFOAM [C]. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orland, Florida, USA, 2009.

  24. Demirdžić I., Perić M. Space conservation law in finite volume calculations of fluid flow [J]. International Journal for Numerical Methods in Fluids, 1988, 8(9): 1037–1050.

    Article  MathSciNet  Google Scholar 

  25. Ahn H. T., Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes [J]. Journal of Computational Physics, 2006, 219(2): 671–696.

    Article  MathSciNet  Google Scholar 

  26. Bao Y., Zhou D., Tu J. Flow interference between a stationary cylinder and an elastically mounted cylinder arranged in proximity [J]. Journal of Fluids and Structures, 2011, 27(8): 1425–1446.

    Article  Google Scholar 

  27. Thiria B., Wesfreid J. E. Stability properties of forced wakes [J]. Journal of Fluid Mechanics, 2007, 579: 137–161.

    Article  Google Scholar 

  28. Thiria B., Wesfreid J. E. Physics of temporal forcing in wakes [J]. Journal of Fluids and Structures, 2009, 25(4): 654–665.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Huang.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No.11872174).

Biography

Zhi-qiang Xin (1981-), Male, Ph. D., Assistant Professor, E-mail: xinzhiqiang@hhu.edu.cn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Zq., Wu, Zh., Wu, Cj. et al. Control of vortex-induced vibrations of the cylinder by using split-ter plates immersed in the cylinder wake at low Reynolds number. J Hydrodyn 32, 942–952 (2020). https://doi.org/10.1007/s42241-020-0063-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0063-8

Key words

Navigation