Skip to main content
Log in

POD analysis on vortical structures in MVG wake by Liutex core line identification

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The Liutex core line method, first combined with the snapshot proper orthogonal decomposition (POD), is utilized in a supersonic micro-vortex generator (MVG) wake flow at Ma = 2.5 and Reθ = 5 760 to reveal the physical significance of each POD mode of the flow field. Compared with other scalar-based vortex identification methods, the Liutex core line identification is verified to be the most appropriate approach that is threshold-free and provides full information of a fluid rotation motion. Meanwhile, the Liutex integration is employed to quantitatively track the evolution of the vortices in MVG wake and is applied to the determination of the effective control section of the MVG wake for the optimization study of MVG design. The physical mechanism of each POD mode for multi-scale and multi-frequency vortical structures is investigated by using Liutex core line identification to give some revelations. For the mean mode (mode 0) indicating the time-averaged velocity flowfield of the MVG wake flow, a pair of primary counter-rotating streamwise vortices and another pair of secondary vortices is uniquely identified by two pairs of Liutex core lines with Liutex magnitude. In contrast, mode 1 is featured by a fluctuated roll-up motion of streamwise vortex, and the streamwise component of the MVG wake is demonstrated to be dominant in terms of the total kinetic energy contribution. Meanwhile, a dominant shedding frequency of St = 0.072 is detected from the temporal behavior of mode 2, which has the organized arc-shaped vortex structures shedding from MVG induced by the K-H instability. Additionally, mode 4 subjects to low-frequency oscillations of the wall vortices and thus takes a relatively lower frequency of St = 0.044.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berkooz G., Holmes P., Lumley J. L. The Proper orthogonal decomposition in the analysis of turbulent flows [J]. Annual Review of Fluid Mechanics, 1993, 25(1): 539–575.

    MathSciNet  Google Scholar 

  2. Babinsky H., Li Y., Pitt Ford C. W. Microramp control of supersonic oblique shock-wave/boundary-layer interactions [J]. AIAA Journal, 2009, 47(3): 668–675.

    Google Scholar 

  3. Li Q., Liu C. LES for supersonic ramp control flow using MVG at M =2.5 and Re = 1440 [R]. AIAA paper, 2010, AIAA 2010-592.

  4. Zhang Q., Liu Y., Wang S. The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition [J]. Journal of Fluids and Structures, 2014, 49: 53–72.

    Google Scholar 

  5. Lugt H. J. The dilemma of defining a vortex. In recent developments in theoretical and experimental fluid mechanics [J]. Berlin Heidelberg, Germany: Springer-Verlag, 1979.

    Google Scholar 

  6. Robinson S. K. A review of vortex structures and associated coherent motions in turbulent boundary layers (Structure of turbulence and drag reduction) [M]. Berlin Heidelberg, Germany: Springer-Verlag, 1990.

    Google Scholar 

  7. Chong M. S., Perry A. E. A general classification of three dimensional flow fields [J]. Physics of Fluids A, 1990, 2(5): 765–777.

    MathSciNet  Google Scholar 

  8. Saffman P. Vortices dynamics [M]. Cambridge, UK: Cambridge University Press, 1992.

    Google Scholar 

  9. Haller G., Hadjighasem A., Farazmand M. et al. Defining coherent vortices objectively from the vorticity [J]. Journal of Fluid Mechanics, 2015, 795: 136–173.

    MathSciNet  MATH  Google Scholar 

  10. Zhou Y., Antonia R. A. A study of turbulent vortices in the near wake of a cylinder [J]. Journal of Fluid Mechanics, 1993, 253: 643–661.

    Google Scholar 

  11. Epps B. Review of vortex identification methods [R]. AIAA paper, 2017, AIAA 2017-0989.

  12. Hunt J. C. R., Wray A. A., Moin P. Eddies, stream, and convergence zones in turbulent flows [R]. Proceedings of the Summer Program, Center for Turbulent Research Report CTR-S88, 1988, 193–208.

  13. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    MathSciNet  MATH  Google Scholar 

  14. Zhou J., Adrian R., Balachandar S. et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353–396.

    MathSciNet  MATH  Google Scholar 

  15. Liu C., Wang Y., Yang Y. New omega vortex identification method [J]. Science China Physics, Mechanics and Astronomy, 2016, 59(8): 684711.

    Google Scholar 

  16. Zhang Y. N., Liu K. H., Li J. W. et al. Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method [J]. Journal of Hydrodynamics, 2018, 30(3): 463–469.

    Google Scholar 

  17. Liu C., Gao Y., Tian S. et al. Rortex a new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Google Scholar 

  18. Gao Y., Liu C. Rortex and comparison with eigenvalue based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Google Scholar 

  19. Wang Y., Gao Y., Liu J. et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-shear decomposition [J]. Journal of Hydrodynamics, 2019, 31(3): 464–474.

    Google Scholar 

  20. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Google Scholar 

  21. Liu J., Liu C. Modified normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(6): 061704.

    Google Scholar 

  22. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Google Scholar 

  23. Gao Y. S., Liu J. M., Yu Y. et al. A Liutex based definition and identification of vortex core center lines [J]. Journal of Hydrodynamics, 2019, 31(3): 445–454.

    Google Scholar 

  24. Xu H., Cai X. S., Liu C. Liutex (vortex) core definition and automatic identification for turbulence vortex structures [J]. Journal of Hydrodynamics, 2019, 31(5): 857–863.

    Google Scholar 

  25. Lumley J. L. Atmospheric turbulence and wave propagation. The structure of inhomogeneous turbulence [J]. Journal of Computational Chemistry, 1967, 23(13): 1236–1243.

    Google Scholar 

  26. Sen M., Bhaganagar K., Juttijudata V. Application of proper orthogonal decomposition (POD) to investigate a turbulent boundary layer in a channel with rough walls [J]. Journal of Turbulence, 2007, 8(41): N41.

    Google Scholar 

  27. Moehlis J., Smith T. R., Holmes P. et al. Models for turbulent plane Couette flow using the proper orthogonal decomposition [J]. Physics of Fluids, 2002, 14(7): 2493–2507.

    MathSciNet  MATH  Google Scholar 

  28. Bergmann M., Cordier L. Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models [J]. Journal of Computational Physics, 2008, 227(16): 7813–7840.

    MathSciNet  MATH  Google Scholar 

  29. Wang H. F., Cao H. L., Zhou Y. POD analysis of a finite-length cylinder near wake [J]. Experiments in Fluids, 2014, 55(8): 1790.

    Google Scholar 

  30. Meyer K. E. E., Pedersen J. M., Ozcan O. A turbulent jet in crossflow analysed with proper orthogonal decomposition [J]. Journal of Fluid Mechanics, 2007, 583: 199–227.

    MathSciNet  MATH  Google Scholar 

  31. Schlatter P., Bagheri S., Henningson D. S. Self-sustained global oscillations in a jet in crossflow [J]. Theoretical and Computational Fluid Dynamics, 2011, 25: 129–146.

    MATH  Google Scholar 

  32. Cavar D., Meyer K. E. LES of turbulent jet in cross flow: Part 2-POD analysis and identification of coherent structures [J]. International Journal of Heat and Fluid Flow, 2012, 36: 35–46.

    Google Scholar 

  33. Jin C., Ma H. POD analysis of entropy generation in a laminar separation boundary layer [J]. Energies, 2018, 11: 3003.

    Google Scholar 

  34. Chen Z., Kong X. P., Li T. J. et al. MVG control on the supersonic compression ramp flow [C]. 31st International Symposium on Shock Waves, Nagoya, Japan, 2019, 1033–1040.

  35. Yang Q., Fu S. Analysis of flow structures in supersonic plane mixing layers using the POD method [J]. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(5): 93–110.

    Google Scholar 

  36. Prothin S., Djeridi H., Billard J. Y. Coherent and turbulent process analysis of the effects of a longitudinal vortex on boundary layer detachment on a NACA0015 foil [J]. Journal of Fluids and Structures, 2014, 47: 2–20.

    Google Scholar 

  37. Berry M. G., Magstadt A. S., Glauser M. N. Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets [J]. Physics of Fluids, 2017, 29(2): 020706.

    Google Scholar 

  38. Luo W., Wei Y., Dai K. et al. Spatiotemporal characterization and suppression mechanism of supersonic inlet buzz with proper orthogonal decomposition method [J]. Energies, 2020, 13(1): 217.

    Google Scholar 

  39. Sun Z., Schrijer F. F. J., Scarano F. et al. The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer [J]. Physics of Fluids, 2012, 24(5): 055105.

    Google Scholar 

  40. Li Q., Liu C. Implicit LES for supersonic microramp vortex generator: New discoveries and new mechanisms [J]. Modelling and Simulation in Engineering, 2011, 934982.

  41. Wang B., Liu W., Zhao Y. et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control [J]. Physics of Fluids, 2012, 24(5): 055110.

    Google Scholar 

  42. Anderson B., Tinapple J., Surber L. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation [R]. AIAA paper, 2006, AIAA 2006–3197.

  43. Dong X., Chen Y., Dong G. Study on wake structure characteristics of a slotted micro-ramp with large-eddy simulation [J]. Fluid Dynamics Research, 2017, 49(3): 035507.

    MathSciNet  Google Scholar 

  44. Li L., Huang W., Yan L. et al. Numerical investigation and optimization on the micro-ramp vortex generator within scramjet combustors with the transverse hydrogen jet [J]. Aerospace Science and Technology, 2019, 84: 570–584.

    Google Scholar 

  45. Dong X., Yan Y., Yang Y. et al. Spectrum study on unsteadiness of shock wave-vortex ring interaction [J]. Physics of Fluids, 2018, 30(5): 056101.

    Google Scholar 

  46. Liu C., Yan Y., Lu P. Physics of turbulence generation and sustenance in a boundary layer [J]. Computers and Fluids, 2014, 102: 353–384.

    Google Scholar 

  47. Sirovich L. Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transformations. III-Dynamics and scaling [J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51906154). The computation is performed by using MPI code “LESUTA” which was developed by Drs. Qin Li and Chaoqun Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqun Liu.

Additional information

Biography: Xiang-rui Dong (1991-), Female, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Xr., Cai, Xs., Dong, Y. et al. POD analysis on vortical structures in MVG wake by Liutex core line identification. J Hydrodyn 32, 497–509 (2020). https://doi.org/10.1007/s42241-020-0037-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0037-x

Key words

Navigation