Skip to main content
Log in

Cavitation vortex dynamics of unsteady sheet/cloud cavitating flows with shock wave using different vortex identification methods

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Cavitation is a complex multiphase flow phenomenon with an abrupt transient phase change between the liquid and the vapor, including multiscale vortical motions. The transient cavitation dynamics is closely associated with the evolution of the cavitation vortex structures. The present paper investigates the cavitation vortex dynamics using different vortex identification methods, including the vorticity method, the Q criterion method, the Omega method (Ω), the λ2 method and the Rortex method. The Q criterion is an eigenvalue-based criterion, and in the Omega method, the parameter is normalized, is independent of the threshold value and in most conditions Ω=0.52. The Rortex method is based on an eigenvector-based criterion. Numerical simulations are conducted using the implemented compressible cavitation solver in the open source software OpenFOAM for the sheet/cloud cavitating flows around a NACA66 (mod) hydrofoil fixed at α=6°, σ=1.25 and Re=7.96×105. The flow is characterized by the alternate interactions of the re-entrant flow and the collapse induced shock wave. Results include the vapor structures and the vortex dynamics in the unsteady sheet/cloud cavitating flows, with emphasis on the vortex structures in the cavitation region, the cavity interface, the cavity closure, the cavity wakes, and the foil wakes with the shedding cavity. The comparisons of the various methods, including that the vorticity method, the Q criterion method, the Omega method, the λ2 method and the Rortex method, show the performances of different methods in identifying the cavitation vortex structures. Generally, during the attached cavity growth stage, the Q criteria can well predict the vortex structures in the cavitation region and at the foil trailing edge in the pure liquid region, while with the Omega method and the Rortex method, the vortex structures outside the attached cavity and on the foil pressure side can also be predicted. The λ2 method can well predict the vortex structures in the cavity closure region. During the re-entrant jet development stage, the vortex structures in the re-entrant jet region is weak. During the cavity cloud shedding stage, the vortex dynamics at the foil leading edge covered by newly grown cavity sheet is different from that during the attached cavity sheet growth stage. During the shock wave formation and propagation stage, strong vortex structures with both the size and the strength are observed owing to the cavity cloud shedding and collapse behavior. The influence of the small parameter ε in the Omega method on the cavitation vortex identification is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang G., Senocak I., Shyy W. et al. Dynamics of attached turbulent cavitating flows [J], Progress in Aerospace Sciences, 2001, 37: 551–581.

    Article  Google Scholar 

  2. Wosnik M., Arndt R. Identification of Large Scale Structures in the Wake of Cavitating Hydrofoils Using LES and Time-Resolved PIV [C]. 26th Symposium on Naval Hydrodynamics, Rome, Italy, 2006.

    Google Scholar 

  3. Gopalan S., Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]. Physics of Fluids, 2000, 12(4): 895–911.

    Article  MATH  Google Scholar 

  4. Wang C., Huang B., Zhang M. et al. Effects of air injection on the characteristics of unsteady sheet/cloud cavitation shedding in the convergent-divergent channel [J]. International Journal of Multiphase Flow, 2018, 106: 1–20.

    Article  Google Scholar 

  5. Arndt R. E. A. Cavitation in vortical flows [J]. Annual Review of Fluid Mechanics, 2003, 34: 143–175.

    Article  MathSciNet  MATH  Google Scholar 

  6. Paik B. G., Kim K. S. et al. Test method of cavitation erosion for marine coating with low hardness [J]. Ocean Engineering, 2011, 38(13): 1495–1502.

    Article  Google Scholar 

  7. Ganesh H., Mäkiharju S. A., Ceccio S. L. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities [J]. Journal of Fluid Mechanics, 2016, 802: 37–78.

    Article  MathSciNet  Google Scholar 

  8. Wang C., Huang B., Wang G. et al. Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation [J]. International Journal of Heat and Mass Transfer, 2017, 114: 769–785.

    Article  Google Scholar 

  9. Reisman G. E., Wang Y. C., Brennen C. E. Observations of shock waves in cloud cavitation [J]. Journal of Fluid Mechanics, 1998, 355: 255–283.

    Article  MATH  Google Scholar 

  10. Ji B., Luo X., Arndt R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J]. International Journal of Multiphase Flow, 2015, 68: 121–134.

    Article  MathSciNet  Google Scholar 

  11. Ji B., Luo X., Arndt R. E. A. et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction [J]. Ocean Engineering, 2014, 87: 64–77.

    Article  Google Scholar 

  12. Chang N. A., Choi J., Yakushiji R. et al. Cavitation inception during the interaction of a pair of counter-rotating vortices [J], Physics of Fluids, 2012, 24: 014107.

    Article  Google Scholar 

  13. Iyer C. O., Ceccio S. L. The influence of developed cavitation on the flow of a turbulent shear layer [J]. Physics of Fluids, 2002, 14(10): 3414–3431.

    Article  MATH  Google Scholar 

  14. Laberteaux, Ceccio S. L. Partial cavity flows. Part 2: Cavities forming on test objects with spanwise variation [J]. Journal of Fluid Mechanics, 2001, 431: 43–63.

    Article  MATH  Google Scholar 

  15. Aeschlimann V., Prothin S., Barre S. et al. High speed visualizations of the cavitating vortices of 2D mixing layer [J]. European Journal of Mechanics — B/Fluids, 2012, 31: 171–180.

    Article  MATH  Google Scholar 

  16. Pennings P., Bosschers J., Westerweel J. et al., Dynamics of isolated vortex cavitation [J]. Journal of Fluid Mechanics, 2015, 778: 288–313.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gnanaskandan A., Mahesh K. Numerical investigation of near-wake characteristics of cavitating flow over a circular cylinder [J]. Journal of Fluid Mechanics, 2016, 790: 453–491.

    Article  MathSciNet  MATH  Google Scholar 

  18. Long X. P., Cheng H. Y., Ji B. et al. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil [J]. International Journal of Multiphase Flow, 2018, 100: 41–56.

    Article  MathSciNet  Google Scholar 

  19. Ji B., Long Y., Long X. P. et al. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J]. Journal of Hydrodynamics, 2017, 29(1): 27–39.

    Article  Google Scholar 

  20. Wang C., Wu Q., Huang B. et al. Numerical investigation of cavitation vortex dynamics in unsteady cavitating flow with shock wave propagation [J]. Ocean Engineering, 2018, 156: 424–434.

    Article  Google Scholar 

  21. Holmes P., Lumley J. L., Berkooz G. et al. Turbulence, coherent structures, dynamical systems and symmetry [M]. Cambridge, UK: Cambridge University Press, 2012.

    Book  MATH  Google Scholar 

  22. Tang J. N., Tseng C. C., Wang N. F. Lagrangian-based investigation of multiphase flows by finite-time Lyapunov exponents [J]. Acta Mechanica Sinica, 2012, 28(3): 612–624.

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang B., Zhao Y., Wang G. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows [J]. Computers & Fluids, 2014, 93: 113–124.

    Article  MATH  Google Scholar 

  24. Dittakavi N., Chunekar A., Frankel S. Large eddy simulation of turbulent-cavitation interactions in a venturi nozzle[J]. Journal of Fluids Engineering, 2010, 132(12): 212301.

    Article  Google Scholar 

  25. Zhao Y., Wang G., Huang B. et al. Lagrangian investigations of vortex dynamics in time-dependent cloud cavitating flows [J]. International Journal of Heat and Mass Transfer, 2016, 93: 167–174.

    Article  Google Scholar 

  26. Epps B. Review of vortex identification methods [C]. 55th AIAA Aerospace Meeting, Grapevine, Texas, 2017.

    Google Scholar 

  27. Dong X., Tian S., Liu C. Correlation analysis on volume vorticity and vortex in late boundary layer transition [J]. Physics of Fluids, 2018, 30(1): 014105.

    Article  Google Scholar 

  28. Dong X., Dong G., Liu C. Study on vorticity structures in late flow transition [J]. Physics of Fluids, 2018, 30(10): 104108.

    Article  Google Scholar 

  29. Hunt J., Wray A., Moin P. Eddies, streams & convergence zones in turbulent flows [R]. Report CTR-S88, Center For Turbulence Research, 1988.

    Google Scholar 

  30. Chong M., Perry A., Cantwell B. A general classification of three-dimensional flow fields [J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  31. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 332: 339–363.

    MathSciNet  Google Scholar 

  32. Elsas J. H., Moriconi L. Vortex identification from local properties of the vorticity field [J]. Physics of Fluids, 2017, 29(1): 015101.

    Article  Google Scholar 

  33. Liu C., Wang Y., Yang Y. et al. New omega identification method [J]. Science China Physics, Mechanics & Astronomy, 2016, 59: 684711.

    Article  Google Scholar 

  34. Zhang Y., Qiu X., Chen F. et al., A selected review of vortex identification methods with applications [J]. Journal of Hydrodynamics, 2018, 30(5): 769–779.

    Article  Google Scholar 

  35. Liu C., Gao Y., Tian S. et al. Rortex — A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  36. Tian S., Gao Y., Dong X. et al. A definition of vortex vector and vortex [J], Journal of Fluid Mechanics, 2018, 849: 312–339.

    Article  MathSciNet  MATH  Google Scholar 

  37. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  38. Wang C., Huang B., Wang G. et al. Numerical simulation of transient turbulent cavitating flows with special emphasis on shock wave dynamics considering the water/vapor compressibility [J]. Journal of Hydrodynamics, 2018, 30(4): 573–591.

    Article  Google Scholar 

  39. Leroux J. B., Astolfi J. A., Billard J. Y. An experimental study of unsteady partial cavitation [J]. Journal of Fluids Engineering, 2004, 126(1): 94–101.

    Article  Google Scholar 

  40. Weller H. G. A new approach to VOF-based interface capturing methods for incompressible and compressible flow [R]. OpenCFD: 2008. Technique report TR/HGW/04.

    Google Scholar 

  41. Saito Y., Takami R., Nakamori I. et al. Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil [J]. Computational Mechanics, 2007, 40(1): 85–96.

    Article  MATH  Google Scholar 

  42. Egorov Y., Menter F. R. Development and application of SST-SAS turbulence model in the DESIBER project [C]. Second Symposium on Hybrid RANS-LES Methods, Corfu, Greece, 2007.

    Google Scholar 

  43. Liu C., Gao Y., Dong X. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Open Foundation of State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University, China) (Grant No: 1611), and Open Fund for the Key Laboratory of Fluid and Power Machinery, Ministry of Education (Xihua University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Huang.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51839001 and 91752105).

Biography: Chang-chang Wang (1992-), Female, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cc., Liu, Y., Chen, J. et al. Cavitation vortex dynamics of unsteady sheet/cloud cavitating flows with shock wave using different vortex identification methods. J Hydrodyn 31, 475–494 (2019). https://doi.org/10.1007/s42241-019-0043-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0043-z

Key words

Navigation