Skip to main content
Log in

Transcriptome analysis and whole genome re-sequencing provide insights on rice kernel smut (Tilletia horrida) pathogenicity

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Rice kernel smut is an important disease caused by Tilletia horrida that affects the production of rice male sterile lines in most hybrid rice growing regions of the world. In this study, the pathogenicity of seven different strains of T. horrida isolated from different parts of China is described. Whole-genome re-sequencing of six T. horrida strains and transcriptome analysis of the reference genome T. horrida strain JY-521 were conducted at different times post inoculation (8, 12, 24, 48, and 72 h) early in the infection. The highest number of differentially expressed genes (DEGs) occurred at 8 h post inoculation. Based on Kyoto Encyclopedia of Genes and Genomes pathway analysis of the DEGs, autophagy processes and lipid degradation were key pathways for T. horrida pathogenicity. In three weakly pathogenic strains, CN-4, XJ-3, and SN-2, the single nucleotide polymorphisms and expression patterns of pathogenicity genes, including carbohydrate-active enzyme genes, pathogen-host interaction genes, effector genes, secondary metabolism-related genes, cytochrome P450 genes, ATP-binding cassette superfamily transporter genes, and G protein-coupled receptor genes, were also analyzed at different times during the infection. Thus, a new understanding of T. horrida pathogenicity was gained by exploring the potential mechanisms for weakened virulence in different strains of rice kernel smut, and a new foundation was provide for further studies on the infection mechanism and future control of this important rice disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

Sequencing data of Tilletia horrida were deposited at the National Center for Biotechnology (NCBI) Sequence Read Archive (SRA) under bioproject PRJNA494098 (for RNA-Seq) and bioproject PRJNA494149 (for genome sequencing).

References

  • Ali S, Laurie JD, Linning R, Cervantes-Chávez JA, Gaudet D, Bakkeren G (2014) An immunity-triggering effector from the barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. PLoS Pathog 10(7):e1004223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8):e1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. Journal of Royal Statistical Society. Series B 57:289–300

  • Bentley DR (2006) Whole genome re-sequencing. Curr Opin Genet Dev 16(6):545–552

    Article  CAS  PubMed  Google Scholar 

  • Biswas A (2003) Kernel smut disease of rice: current status and future challenges. Environ Ecol 21:336–351

    Google Scholar 

  • Brooks SA, Anders MM, Yeater KM (2009) Effect of cultural management practices on the severity of false smut and kernel smut of Rice. Plant Dis 93:1202–1208

    Article  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed  Google Scholar 

  • Cao HJ, Huang PY, Yan YX, Shi YK, Dong B, Liu XH, Ye LD, Lin FC, Lu JP (2018) The basic helix-loop-helix transcription factor Crf1 is required for development and pathogenicity of the rice blast fungus by regulating carbohydrate and lipid metabolism. Environ Microbiol 20(9):3427–3441

    Article  CAS  PubMed  Google Scholar 

  • Carris LM, Castlebury LA, Goates BJ (2006) Nonsystemic bunt Fungi-Tilletia indica and T. horrida: a review of history, systematics, and biology. Annu Rev Phytopathol 44:113–133

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath SD, Wendl MC, Zhang Q, Locke DP, Shi X, Fulton RS, Ley TJ, Wilson RK, Ding L, Mardis ER (2009) Break dancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yang X, Yao J, Kyaw EP, Zhang AF, Li YF, Gu CY, Zang HY, Gao TC (2016) Simple and rapid detection of Tilletia horrida causing rice kernel smut in rice seeds. Sci Rep 6:33258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cord-Landwehr S, Melcher RLJ, Kolkenbrock S, Moerschbacher BM (2016) A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Sci Rep 6:38018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  CAS  PubMed  Google Scholar 

  • Deng GH, Yang ZH, Cheng JF (1997) Study on standardized index for grain smut of rice. China Journal of Plant Protection 24(2):189–190

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC bioinformatics 7:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faris JD, Zhang ZC, Lu HJ, Lu SW, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci U S A 107:13544–13549

    Article  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868

    Article  CAS  PubMed  Google Scholar 

  • Goodwin SB, M'barek SB, Dhillon B, Wittenberg AH, Crane CF, Hane JK, Foster AJ, der Lee V (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7(6):e1002070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HP, Ma S, Huang JH, Zheng JL, Yi KX (2016) Whole genome re-sequencing and transcriptome analysis of the Stylosanthes Anthracnose pathogen Colletotrichum gloeosporioides reveal its characteristics. Mycosphere 7(8):1124–1146

    Article  Google Scholar 

  • Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Mulle O (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Gota S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(Database issue):D480–D484

    CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat 2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J (2009) SNP detection for massively parallel whole-genome re-sequencing. Genome Res 19(6):545–552

    Article  CAS  Google Scholar 

  • Liu SH, Lu JP, Zhu RL, Dai FM (2005) A rapid and simple extraction method for plant pathogenic fungi. Acta Phytopathologica Sinica 35(4):362–365

  • Ma LJ, van der DC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher CA, Palanisamy N, Brenner JC, Cao X, Kalyana-Sundaram S, Luo S, Khrebtukova I, Barrette TR, Grasso C, Yu J, Lonigro RJ, Schroth G, Kumar-Sinha C, Chinnaiyan AM (2009) Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci U S A 106(30):12353–12358

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics. 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Mueller O, Kahmann R, Aguilar G, Wu A (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45:S63–S70

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 8(12):e1003037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Que YX, Xu LP, Wu QB, Ling H, Liu YH, Zhang YY, Guo JL, Su YC, Chen JB, Wang SS, Zhang CG (2014) Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. BMC Genomics 15:996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogerson CT (1988) Illustrated genera of smut fungi. Brittonia 40:107

    Article  Google Scholar 

  • Schuler D, Höll C, Grün N, Ulrich J, Dillner B, Klebl F, Ammon A, Voll LM, Kämper J (2018) Galactose metabolism and toxicity in Ustilago maydis. Fungal Genet Biol 114:42–52

  • Soanes DM, Richards TA, Talbot NJ (2007) Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity? Plant Cell 19:3318–3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stergiopoulos L, de Wit PJG (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263

    Article  CAS  PubMed  Google Scholar 

  • Struna A (2016) Toxic effects of aflatoxin B1, sterigmatocystin and ochratoxina a on a HaCaT human keratinocyte cell line. Univerza v Ljubljani

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2014) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 9(10):2513

    Article  CAS  Google Scholar 

  • Tsuda M, Sasahara M, Ohara T, Kato S (2006) Optimal application timing of simeconazole granules for control of rice kernel smut and false smut. J Gen Plant Pathol 72:301–304

    Article  CAS  Google Scholar 

  • Verbruggen B, Bickley LK, Santos EM, Tyler CR, Stentiford GD, Bateman KS, van Aerle R (2015) De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genomics 16(1):1–17

    Article  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ai P, Tang Y, Zhang J, Dai XJ, Li P, Zheng AP (2015) Draft genome sequence of the rice kernel smut Tilletia horrida strain QB-1. Genome Announc 3:e00621–e00615

    PubMed  PubMed Central  Google Scholar 

  • Wang AJ, Pan LX, Wang N, Ai P, Yin DS, Li SC, Deng QM, Zhu J, Liang YY, Zhu JQ, Li P, Zheng AP (2018) The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics. Sci Rep 8:15413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li Y, Li C, Song X, Lei J, Gao Y, Liang Q (2019) Comparative transcriptome profiling of resistant and susceptible sugarcane genotypes in response to the airborne pathogen Fusarium verticillioides. Mol Biol Rep:1–13

  • Xing M, Lv H, Ma J, Xu D, Li H, Yang L, Kang J, Wang X, Fang Z (2016) Transcriptome profiling of resistance to Fusarium oxysporum f. sp. conglutinans in cabbage (Brassica oleracea) roots. PLoS One 11(2):e0148048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue M, Yang J, Li Z, Hu S, Yao N, Dean RA, Zhao W, Shen M, Zhang H, Li C, Liu L, Cao L (2012) Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet 8(8):e1002869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap HY, Chooi YH, Fung SY, Ng ST, Tan CS, Tan NH (2015) Transcriptome analysis revealed highly expressed genes encoding secondary metabolite pathways and small cysteine-rich proteins in the sclerotium of Lignosus rhinocerotis. PLoS One 10(11):e0143549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Liu H, Li Z, Ke X, Dou D, Gao X, Song N, Dai Q, Wu Y, Xu JR, Kang Z, Huang L (2015) Genome sequence of Valsa canker pathogens uncovers a potential adaptation of colonization of woody bark. New Phytol 208(4):1202–1216

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang K, Fang A, Han Y, Yang J, Xue M, Bao J, Hu D, Zhou B, Sun X, Li S (2014) Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat Commun 5:3849

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Liu H, Wang C, Xu JR (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou SM, Chen LM, Liu SQ, Wang XF, Sun XD (2015) De novo assembly and annotation of the Chinese chive (Allium tuberosum Rottler ex Spr.) transcriptome using the Illumina platform. PLoS One 10(5):e0133312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XM, Li L, Wu M, Liang S, Shi HB, Liu XH, et al (2018) Current opinious on autophagy in pathogenicity of fungi. Virulence

Download references

Acknowledgements

We thank the scientific and technological research program of the Chongqing Municipal Education Commission (KJ15012017) and the National Natural Science Foundation (31400130) for supporting this research.

Funding

This study was funded by the scientific and technological research program of the Chongqing Municipal Education Commission (KJ15012017) and the National Natural Science Foundation (31400130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Zheng.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Shu, X., Niu, X. et al. Transcriptome analysis and whole genome re-sequencing provide insights on rice kernel smut (Tilletia horrida) pathogenicity. J Plant Pathol 102, 155–167 (2020). https://doi.org/10.1007/s42161-019-00401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-019-00401-8

Keywords

Navigation