Skip to main content

Advertisement

Log in

Microstructure and mechanical behavior of carbon fiber reinforced carbon, silicon carbide, and copper alloy hybrid composite fabricated by Cu-Si alloy melt infiltration

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

To improve the toughness and strength of C/C-SiC composites, carbon fiber reinforced carbon, silicon carbide, and copper alloy hybrid composite were designed and prepared via Cu-Si alloy melt infiltration at low temperature. The as-prepared composite was mainly composed of C, SiC, Cu3Si, and Si phases. Due to the introduction of ductile Cu alloy in the matrix, the composite exhibited good mechanical properties, especially fracture toughness. Cu reacted with Si to produce the Cu3Si phase in the composite’s matrix, which reduced the residual silicon in the normal C/C-SiC composite. The bending strength of the as-prepared composite reached about 258.75 MPa and the fracture toughness was up to about 13.55 MPa·m1/2. The improved toughness of the as-prepared composite was mainly attributed to the introduction of soft Cu3Si phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Esfehanian M, Günster J, Moztarzadeh F, Heinrich JG (2007) Development of a high temperature Cf/XSi2–SiC (X=Mo, Ti) composite via reactive melt infiltration. J Eur Ceram Soc 27(2–3):1229–1235. https://doi.org/10.1016/j.jeurceramsoc.2006.05.058

  2. Krenkel W, Heidenreich B, Renz R (2002) C/C‐SiC composites for advanced friction systems. Adv Eng Mater 4(7):427–436. https://doi.org/10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C

  3. Li Y, Xiao P, Luo H, Almeida RS, Z. Li, W. Zhou, A. Brückner, F. Reichert, N. Langhof, W. Krenkel (2016) Fatigue behavior and residual strength evolution of 2.5 DC/C-SiC composites. J Eur Ceram Soc 36(16):3977–3985. https://doi.org/10.1016/j.jeurceramsoc.2016.07.009

  4. Tong YG, Wang B, Hua MY, Hu YL, Han K, Shen HJ, Li Y, Zhang XY, Zhang P, Liu Y (2022) Tough and wear-resistant carbon fiber reinforced TiC-based composite prepared by alloyed melt infiltration at low temperatures. Ceram Int 48(4):4665–4674.https://doi.org/10.1016/j.ceramint.2021.11.002

  5. Zhang H, Liang X, Hu Y, Zhang P, Yang L, He D, Hua, Tong Y (2021) Correlation of C/C preform density and microstructure and mechanical properties of C/C-ZrC-based ultra-high-temperature ceramic matrix composites. Adv Compos Mater 4(3):743–750.https://doi.org/10.1007/s42114-021-00295-0

  6. Berndt WK (2005) C/C–SiC composites for space applications and advanced friction systems. Mater Sci Eng, A. https://doi.org/10.1016/j.msea.2005.08.204

    Article  Google Scholar 

  7. Jiang G, Yang J, Xu Y, Gao J, Zhang J, Zhang L, Cheng L, Lou J (2008) Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration. Compos Sci Technol 68(12):2468–2473. https://doi.org/10.1016/j.compscitech.2008.04.025

    Article  CAS  Google Scholar 

  8. Li Z, Xiao P, Zhang BG, Li Y, Lu YH, Zhu SH (2016) Preparation and dynamometer tests of 3D needle-punched C/C-SiC composites for high-speed and heavy-duty brake systems. Int J Appl Ceram Technol 13(3):423–433. https://doi.org/10.1111/ijac.12514

    Article  CAS  Google Scholar 

  9. Peng X, Li Z, Xiang X (2010) Microstructure and tribological properties of 3D needle-punched C/C–SiC brake composites. Solid State Sci 12(4):617–623. https://doi.org/10.1016/j.solidstatesciences.2010.01.014

    Article  CAS  Google Scholar 

  10. Tong YG, Ren ZY, Hu YL, Zhang P, Liang XB, Chen YX, Yang LW, Hua MY (2022) Damage behavior and mechanism of C/C-SiC composite ablated under different environments. Adv Compos Mater 5(2):1433–1438.https://doi.org/10.1007/s42114-021-00387-x

  11. Li Z, Long Y, Li Y, Li JW, Xiong X, Xiao P (2016) Microstructure and properties of needle punching chopped carbon fiber reinforced carbon and silicon carbide dual matrix composite. Ceram Int 9527–9537. https://doi.org/10.1016/j.ceramint.2016.03.031

  12. Li Z, Xiao P, Xiong X, Huang B-Y (2013) Preparation and tribological properties of C fibre reinforced C/SiC dual matrix composites fabrication by liquid silicon infiltration. Solid State Sci 16:6–12. https://doi.org/10.1016/j.solidstatesciences.2012.10.007

    Article  CAS  Google Scholar 

  13. Xiong C, Li T, Zhao T, Khan M, Wang J, Ji X, Li H, Liu W, Shang Y (2015) Preparation of C/C-SiC composite by low temperature compression molding-liquid silicon infiltration and its application in automobile brake. Ceram Int. https://doi.org/10.1016/j.ceramint.2015.09.030

    Article  Google Scholar 

  14. Langhof N, Voigt R, Mucha H, Krenkel W (2010) The effect of residual silicon in CMC brake pads on friction and wear.

  15. Chen FX, Hao WQ, Fu R, Yan JY (2019) Effect of residual Si on friction and wear properties of carbon ceramic (C/C-SiC) composites. China Metal Bulletin 5:4

    Google Scholar 

  16. Fan S, Du Y, He L, Yang C, Liu H, Cheng L, Zhang L, Travitzky N (2016) Microstructure and properties of α-FeSi2 modified C/C–SiC brake composites. Tribol Int 102:10–18. https://doi.org/10.1016/j.triboint.2016.05.016

    Article  CAS  Google Scholar 

  17. Fan X, Yin X, He S, Zhang L, Cheng L (2012) Friction and wear behaviors of C/C-SiC composites containing Ti3SiC2. Wear 274–275:188–195. https://doi.org/10.1016/j.wear.2011.08.029

  18. Li Y, Xiao P, Zhou W, Luo H, Li Z (2018) Microstructure and properties of plain-weave carbon fabric reinforced ceramic composites containing Cu-Si alloy. Compos B Eng 145:129–135. https://doi.org/10.1016/j.compositesb.2018.03.013

    Article  CAS  Google Scholar 

  19. Xiao P, Lu Y-H, Liu Y-Z, Li Z, Fang H-C, Zhou W, Almeida RS, Li Y (2017) Microstructure and properties of Cu-Ti alloy infiltrated chopped Cf reinforced ceramics composites. Ceram Int 43(18):16628–16637. https://doi.org/10.1016/j.ceramint.2017.09.053

    Article  CAS  Google Scholar 

  20. Liu Y, Fu Q, Wang B, Liu T, Sun J (2017) The ablation behavior and mechanical property of C/C-SiC-ZrB2 composites fabricated by reactive melt infiltration. Ceram Int 43(8):6138–6147. https://doi.org/10.1016/j.ceramint.2017.02.008

    Article  CAS  Google Scholar 

  21. Wang Y, Zhu X, Zhang L, Cheng L (2011) Reaction kinetics and ablation properties of C/C–ZrC composites fabricated by reactive melt infiltration. Ceram Int 37(4):1277–1283. https://doi.org/10.1016/j.ceramint.2010.12.002

    Article  CAS  Google Scholar 

  22. Zhao Z, Li K, Li W, Liu Q, Kou G, Zhang Y (2018) Ablation behavior of C/C-ZrC-SiC composites prepared by reactive melt infiltration under oxyacetylene torch at two heat fluxes. Ceram Int 44(14):17345–17358. https://doi.org/10.1016/j.ceramint.2018.06.199

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 92166105 and 52005053), High-Tech Industry Science and Technology Innovation Leading Program of Hunan Province (No.2020GK2085), and The Science and Technology Innovation Program of Hunan Province (No. 2021RC3096).

Author information

Authors and Affiliations

Authors

Contributions

Y.G. Tong, L. Wang, and B. Wang contributed the central idea, analyzed most of the data, and wrote the initial draft of the paper. The remaining authors contributed to refining the ideas, carrying out additional analyses, and finalizing this paper.

Corresponding authors

Correspondence to Yonggang Tong or Jian Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Y., Wang, L., Wang, B. et al. Microstructure and mechanical behavior of carbon fiber reinforced carbon, silicon carbide, and copper alloy hybrid composite fabricated by Cu-Si alloy melt infiltration. Adv Compos Hybrid Mater 6, 25 (2023). https://doi.org/10.1007/s42114-022-00612-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-022-00612-1

Keywords

Navigation