Skip to main content
Log in

Structural design and broadband radar absorbing performance of multi-layer patch using carbon black

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

To improve the reliability of the design and maximize the radar absorbing performance of the absorbent, a design method for the gradient and multi-layer radar absorbing patch (RAP) using the carbon black (CB) as the absorbent was proposed in this paper. Results show that a new accurate gradient impedance design for the conventional CB absorbent using gradient design principle fully optimize the impedance matching and attenuation characteristics of RAP, thereby effectively broadening the radar absorbing bandwidth. When the RAPs with 5%, 15%, 25%, and 35% of CB were used as the 4th, 3rd, 2nd, and 1st layers of RAP, respectively, the corresponding average sheet resistance of each layer is 730 Ω/sq, 578 Ω/sq, 336 Ω/sq, and 209 Ω/sq; the thickness of each layer is 2 mm; and the total thickness is 8 mm; the bandwidth of RAP with the reflection loss below −10 dB and −8 dB is 4.65 GHz and 12.22 GHz, respectively, in the frequency band of 4–18 GHz. The broadband radar absorbing effect resulted from the synergistic effect of gradient impedance and thickness. Due to the improved matching of surface matching layer and wave impedance of free space, more electromagnetic (EM) waves entered the RAP, and the transmission path of EM waves was extended because of the polarization, multiple refraction, and reflection of interface, thus increasing the reflection loss and improving the radar absorbing performance. This design strategy has significant effect on increasing the bandwidth of thin-layer radar absorbing materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo J, Li X, Chen ZR, Zhu JF, Mai XM, Wei RB, Sun K, Liu H, Chen YX, Naik N, Guo ZH (2022) Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  2. Tao X, Liu DQ, Yu JS, Cheng HF (2021) Reversible metal electrodeposition devices: an emerging approach to effective light modulation and thermal management. Adv Opt Mater 9:2001847

    Article  CAS  Google Scholar 

  3. Li MY, Liu DQ, Cheng HF, Peng L, Zu M (2020) Manipulating metals for adaptive thermal camouflage. Sci Adv 6:eaba3494

    Article  CAS  Google Scholar 

  4. Lu XK, Zhu DM, Li X, Li MH, Chen Q, Qing YC (2021) Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00258-5

    Article  Google Scholar 

  5. Xie PT, Liu Y, Feng M, Niu M, Liu CZ, Wu NN, Sui KY, Patil RR, Duo P, Guo ZH, Fan RH (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173

    Article  CAS  Google Scholar 

  6. Guo J, Li X, Liu H, Young DP, Song G, Song KN, Zhu JF, Kong J, Guo ZH (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-,1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:51

    Article  CAS  Google Scholar 

  7. Qiao J, Zhang X, Liu C, Wang Z, Liu W, Wang FL, Liu JR (2021) High-permittivity Sb2S3 single-crystal nanorods as a brand-new choice for electromagnetic wave absorption. Sci China Mater 64:1733

    Article  CAS  Google Scholar 

  8. Qiao J, Zhang X, Xu DM, Kong LX, Lv L, Fan Y, Wang FL, Liu W, Liu JR (2020) Design and synthesis of TiO2/Co/Carbon nanofibers with tunable and efficient electromagnetic absorption. Chem Eng J 380:122591

    Article  CAS  Google Scholar 

  9. Wu NN, Zhao BB, Liu JY, Li YL, Chen YB, Chen L, Wang M, Guo ZH (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00307-z

    Article  CAS  Google Scholar 

  10. Wu NN, Du WJ, Hu Q, Vupputuri S, Jiang QL (2021) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11

    CAS  Google Scholar 

  11. Li W, Zhang Y, Wu T, Cao J, Chen Z, Guan J (2019) Broadband radar cross section reduction by in-plane integration of scattering metasurfaces and magnetic absorbing materials. Results Phys 12:1964

    Article  Google Scholar 

  12. Kwak B, Choi W, Noh Y, Jeong G, Yook J, Kweon J, Nam Y (2020) Nickel-coated glass/epoxy honeycomb sandwich composite for broadband RCS reduction. Compos Part B 191:107952

    Article  CAS  Google Scholar 

  13. Sang GL, Xu P, Yan T, Murugadoss V, Naik N, Ding YS, Guo ZH (2021) Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett 13:153

    Article  CAS  Google Scholar 

  14. Wu XH, Fu CJ, Zhang ZM (2020) Chiral absorbers based on polarization conversion and excitation of magnetic polaritons. ES Energy Environ 8:5

    Google Scholar 

  15. Luo F, Liu DQ, Cao TS, Cheng HF, Kuang JC, Deng YJ, Xie W (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00275-4

    Article  CAS  Google Scholar 

  16. Huang H, Wang W, Cao T, Kuang J, Deng Y, Hua M, Xie W (2020) Broadband radar absorbing performance of corrugated structure. Compos Struct 253:112809

    Article  Google Scholar 

  17. Huang H, Wang W, Hua M, Kuang J, Ma Y, Guo Z, Xie W (2020) Broadband radar absorbing characteristic based on periodic hollow truncated cone structure. Phys B Condens Matter 595:412368

    Article  CAS  Google Scholar 

  18. Xie W, Zhu XK, Yi SH, Kuang JC, Cheng HF, Tang W, Deng YJ (2016) Electromagnetic absorption properties of natural microcrystalline graphite. Mater Des 90:38

    Article  CAS  Google Scholar 

  19. Micheli D, Apollo C, Pastore R, Marchetti M (2010) X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos Sci Technol 70:400

    Article  CAS  Google Scholar 

  20. Zhang X, Qiao J, Jiang YY, Wang FL, Tian XL, Wang Z, Wu LL, Wei L, Liu JR (2021) Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett 13:135

    Article  CAS  Google Scholar 

  21. Qiao J, Zhang X, Liu C, Lyu LF, Yang YF, Wang Z, Wu LL, Liu W, Wang FL, Liu JR (2021) Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett 13:75

    Article  Google Scholar 

  22. Singh J, Singh C, Kaur D, Narang SB, Joshi R, Mishra SR, Jotania R, Ghimire M, Chauhan C (2016) Tunable microwave absorption in Co-Al substituted M-type Ba-Sr hexagonal ferrite. Mater Des 110:749

    Article  CAS  Google Scholar 

  23. Golchinvafa S, Masoudpanah SM, Jazirehpour M (2019) Magnetic and microwave absorption properties of FeCo/CoFe2O4 composite powders. J Alloys Compd 809:151–746

    Article  Google Scholar 

  24. Choi J, Jung H (2015) A new triple-layered composite for high-performance broadband microwave absorption. Compos Struct 122:166

    Article  Google Scholar 

  25. Zhou Q, Yin X, Ye F, Liu X, Cheng L, Zhang L (2017) A novel two-layer periodic stepped structure for efective broadband radar electromagnetic absorption. Mater Des 123:46

    Article  CAS  Google Scholar 

  26. Choi WH, Kwak BS, Kweon JH, Nam YW (2020) Radar-absorbing foam-based sandwich composite with electroless nickelplated glass fabric. Compos Struct 243:112252

    Article  Google Scholar 

  27. Luo H, Zhang X, Huang S, Shan D, Deng L, He L (2019) Infrared emissivity and microwave transmission behavior of faky aluminum functionalized pyramidal-frustum shaped periodic structure. Infrared Phys Technol 99:123

    Article  CAS  Google Scholar 

  28. Kwak B, Jeong G, Choi W, Nam Y (2021) Microwave-absorbing honeycomb core structure with nickel-coated glass fabric prepared by electroless plating. Compos Struct 256:113148

    Article  CAS  Google Scholar 

  29. Huang Y, Song W, Wang C, Xu Y, Wei W, Chen M, Tang L, Fang D (2018) Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption. Compos Sci Technol 162:206

    Article  CAS  Google Scholar 

  30. Li W, Lin L, Li C, Wang Y, Zhang J (2019) Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal. Results Phys 12:278

    Article  Google Scholar 

  31. Fang J, Huang J, Gou Y, Shang Y (2020) Research on broadband tunable metamaterial absorber based on PIN diode. Optik 200:163171

    Article  CAS  Google Scholar 

  32. Ozden K, Yucedag OM, Kocer H (2016) Metamaterial based broadband RF absorber at X-band. Int J Electron Commun 70:1062

    Article  Google Scholar 

  33. Hu H, Liao W, Hou L, An Q, Zhang X (2021) Ultra-thin ultra-broadband metamaterial absorber based on impedance surface. AEU Int J Electron Commun 138:153860

    Article  Google Scholar 

  34. Wang Z, Zhoua C, Khaliulinb V, Shabalovb A (2018) An experimental study on the radar absorbing characteristics of folded core structures. Compos Struct 194:199

    Article  Google Scholar 

  35. Choi I, Kim JG, Seo IS, Lee DG (2012) Radar absorbing sandwich construction composed of CNT, PMI foam and carbon/epoxy composite. Compos Struct 94:3002–3008

    Article  Google Scholar 

  36. Ma MY, Zhang XJ, Zeng YB (2017) Application of multilayer structure design in absorbing materials. Aerospace Materials & Technology 4:8

    Google Scholar 

  37. Xu ZY, Li W, Ma GQ, Chen ZH, Guan JG (2021) Design of broadband absorbers by multiple layers containing absorbents with different magnetic properties. J Mater Sci Eng 39:199

    Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (Grant 61871060, 51201022), the project of Science and Technology on Advanced Ceramic Fibers and Composites Laboratory (WDZC20195500502), and the Changsha Science and Technology Project (kq2004069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, D., Cheng, H. et al. Structural design and broadband radar absorbing performance of multi-layer patch using carbon black. Adv Compos Hybrid Mater 5, 3137–3145 (2022). https://doi.org/10.1007/s42114-021-00399-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00399-7

Keywords

Navigation