Skip to main content
Log in

A study on the influence of metal (Fe, Bi, and Ag) doping on structural, optical, and antimicrobial activity of ZnO nanostructures

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In present work, the doping of ZnO nanoparticles has been achieved successfully by the addition of intentional impurity in the ZnO lattice by two transitions and one other metal namely iron, silver, and bismuth, respectively (Zn1−xO-Fex, Zn1−xO-Bix, and Zn1−xO-Agx; x = 10%). The aim of the work is to enhance the optical and antimicrobial efficiency of ZnO by doping with different metals and study the effect on structural, morphological, and optical properties. The as-synthesized pure and doped ZnO were characterized using advanced tools i.e. TEM, SEM, XRD, FT-IR, EDX, UV-DRS, BET, AFM, and Raman spectroscopy. The antimicrobial activity of pure and doped ZnO was tested on Gram-positive and -negative bacteria by agar disc diffusion assay. The significant change was observed in the optical and morphological properties of ZnO after doping clearly due to the influence of dopant ions.

Summary: Graphical abstract shows the synthesis, doping (Fe, Bi, and Ag), and characterization (TEM) of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Serrano E, Rus G, Garc J (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13:2373–2384

    CAS  Google Scholar 

  2. Banerjee D et al (2004) Synthesis and photoluminescence studies on ZnO nanowires. Nanotechnology. 15:404–409

    CAS  Google Scholar 

  3. Philippot K, Serp P (2013) Concepts in nanocatalysis. Nanomaterials in Catalysis 1:1–54

  4. Raciukaitis G et al. (2008) Accumulation effects in laser ablation of metals with high-repetition-rate lasers; Proc. SPIE 7005, High-Power Laser Ablation VII, 70052L–70052L–11. https://doi.org/10.1117/12.782937

  5. Kumar S, Singh F, Kapoor A (2014) Synthesis and characterization of nano-crystalline ZnO quantum dots via sol-gel route for dye-sensitized solar cells. Int J Recent Trends Electr Electron Eng 4(1):25–29

    Google Scholar 

  6. Bandekar G et al (2013) Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Appl Nanosci 4(2):199–208

    Google Scholar 

  7. Arruda LB et al (2013) Sonochemical synthesis and magnetism in Co-doped ZnO nanoparticles. J Supercond Nov Magn 26:2515–2519. https://doi.org/10.1007/s10948-012-1417-4

    Article  CAS  Google Scholar 

  8. Addahi PM et al (2014) Effect of doping on structural and optical properties of ZnO nanoparticles: a study of antibacterial properties. Mater Sci-Pol 32(2):130–135

    Google Scholar 

  9. Peña-Garcia R, Guerra Y, Farias BVM, Santos FEP, Nobre FX, Caland JP et al (2019) Unusual thermal dependence of saturation magnetization in zinc oxide nanoparticles doped with transition metals obtained by sol-gel method. Ceram Int 45(1):918–929

    Google Scholar 

  10. Gao T, Li Q, Wang T (2005) Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem Mater 17:887–892

    CAS  Google Scholar 

  11. Heo YW et al (2004) ZnO: growth. Mater Sci Eng R:34–40

  12. Khorsand Zak A et al (2013) Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason Sonochem 20(1):395–400

    CAS  Google Scholar 

  13. Thankalekshmi RR, Dixit S, Rastogi AC (2013) Doping sensitive optical scattering in zinc oxide nanostructured films for solar cells. Adv Mater Lett 4 (1):9–14

  14. Wu X et al (2014) Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis. J Nanomater 792102:1–7

    Google Scholar 

  15. Samadi M et al (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19

    CAS  Google Scholar 

  16. Guo-heng Z et al (2013) Engineering of electronic and optical properties of ZnO thin films via Cu doping. Chin Phys B 22(4):4–7

    Google Scholar 

  17. Xian F et al (2013) Characteraction of Ag-doped ZnO thin film synthesized by sol-gel method and its using in thin film solar cells. Optik. 124:4876–4879

    CAS  Google Scholar 

  18. Xie W et al (2010) Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J Photochem Photobiol A Chem 216(2–3):149–155. https://doi.org/10.1016/j.jphotochem.2010.06.032

    Article  CAS  Google Scholar 

  19. Bechambi O et al (2015) Applied surface science photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl Surf Sci 347:414–420

    CAS  Google Scholar 

  20. Chakma S, Bhasarkar JB, Moholkar VS (2013) Preparation, characterization, and application of sonochemically doped Fe3+ into ZnO nanoparticles. Int J Res Eng Technol 2(8):177–183

  21. Chen C et al (2015) Photocatalyst ZnO-doped Bi2O3 powder prepared by spray pyrolysis Z: Zn/Bi oxide. Powder Technol 272:316–321. https://doi.org/10.1016/j.powtec.2014.11.036

    Article  CAS  Google Scholar 

  22. Hosseini SM et al (2015) Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J Alloys Compd 640:408–415

    CAS  Google Scholar 

  23. Johar MA et al (2015) Photocatalysis and bandgap engineering using ZnO nanocomposites. Adv Mater Sci Eng 934587:22. https://doi.org/10.1155/2015/934587

  24. Natarajan TS, Tayade RJ (2017) Photocatalysis: present, past, and future. Inorganic pollutants in wastewater. Methods Anal Removal Ttreat 16(1):63. https://doi.org/10.21741/9781945291357-1

  25. Reza M et al (2017) Application of doped photocatalysts for organic pollutant degradation - a review. J Environ Manag 198:78–94

    Google Scholar 

  26. Khan SH, Pathak B, Fulekar MH (2016) Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties. In AIP Conference Proceedings 1724:020108. https://doi.org/10.1063/1.4945228

  27. Neamtu J, Volmer M (2014) The influence of doping with transition metal ions on the structure and magnetic properties of zinc oxide thin films. Sci World J 265969, 7 pages:1–8. https://doi.org/10.1155/2014/265969

    Article  CAS  Google Scholar 

  28. Zhang Y, Apostoluk A, Theron C, Cornier T, Canut B, Daniele S, Masenelli B (2019) Doping of ZnO inorganic-organic nanohybrids with metal elements. Sci Rep 9(1):1–10

    Google Scholar 

  29. Hossienzadeh K, Maleki A, Daraei H, Safari M, Pawar R, Lee SM (2019) Sonocatalytic and photocatalytic efficiency of transition metal-doped ZnO nanoparticles in the removal of organic dyes from aquatic environments. Korean J Chem Eng 36(8):1360–1370

    CAS  Google Scholar 

  30. Kazeminezhad I, Saadatmand S, Yousefi R (2016) Effect of transition metal elements on the structural and optical properties of ZnO nanoparticles. Bull Mater Sci 39(3):719–724

    CAS  Google Scholar 

  31. Martin N, Capochichi-Gnambodoe M, Le Pivert M, Leprince-Wang Y (2019) A comparative study on the photocatalytic efficiency of ZnO nanowires doped by different transition metals. Acta Phys Pol A 135(3)

  32. Ghosh B, Bagani K, Majumder S, Modak M, Ray MK, Sardar M, Banerjee S (2019) Can one introduce long-range ferromagnetism by doping transition metal in wide bandgap semiconducting ZnO? Results Phys 12:623–628

    Google Scholar 

  33. Fern M (2013) Influence of Fe ions on the optical properties of Fe – ZnO inverse. J Supercond Nov Magn:2447–2449

  34. Karamat S et al (2014) Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Prog Nat Sci 24(2):142–149. https://doi.org/10.1016/j.pnsc.2014.03.009

    Article  CAS  Google Scholar 

  35. Khan SH, Pathak B, Fulekar MH (2018) Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material. Nanotechnol Environ Eng 3:13. https://doi.org/10.1007/s41204-018-0041-3

    Article  CAS  Google Scholar 

  36. Khatir NM et al (2016) Sol-gel grown Fe-doped ZnO nanoparticles: antibacterial and structural behaviors. J Sol-Gel Sci Technol 78(1):91–98. https://doi.org/10.1007/s10971-015-3922-y

    Article  CAS  Google Scholar 

  37. Lin Y et al (2007) Fe-doped ZnO magnetic semiconductor by mechanical alloying. J Alloys Compd 436:30–33. https://doi.org/10.1016/j.jallcom.2006.07.011

    Article  CAS  Google Scholar 

  38. Abed S et al (2015) Influence of Bi doping on the electrical and optical properties of ZnO thin films. Superlattice Microst 85:370–378. https://doi.org/10.1016/j.spmi.2015.06.008

    Article  CAS  Google Scholar 

  39. Li F et al (2010) Applied surface science synthesis and characterization of ZnO – Ag core-shell nanocomposites with uniform thin silver layers. Appl Surf Sci 256(20):6076–6082. https://doi.org/10.1016/j.apsusc.2010.03.123

    Article  CAS  Google Scholar 

  40. Chinnammal J, Sailatha E, Gunasekaran S (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 144:17–22. https://doi.org/10.1016/j.saa.2015.02.041

  41. Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 3(1):1033

    Google Scholar 

  42. AL-Jawad SM, Sabeeh SH, Taha AA, Jassim HA (2018) Studying structural, morphological and optical properties of nanocrystalline ZnO: Ag films prepared by sol–gel method for antimicrobial activity. J Sol-Gel Sci Technol 87(2):362–371

    CAS  Google Scholar 

  43. Qi K, Cheng B, Yu J, Ho W (2017) Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J Alloys Compd 727:792–820

    CAS  Google Scholar 

  44. da Silva BL, Abuçafy MP, Manaia EB, Junior JAO, Chiari-Andréo BG, Pietro RCR, Chiavacci LA (2019) Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int J Nanomedicine 14:9395

    Google Scholar 

  45. Verma R, Chauhan A, Shandilya M, Li X, Kumar R, Kulshrestha S (2020) Antimicrobial potential of Ag-doped ZnO nanostructure synthesized by the green method using Moringa oleifera extract. J Environ Chem Eng 8(3):103730. https://doi.org/10.1016/j.jece.2020.103730

  46. Khan SH (2020) Green nanotechnology for the environment and sustainable development. In: Green materials for wastewater treatment. Springer, Cham, pp 13–46

    Google Scholar 

  47. Sathya M, Pushpanathan K (2018) Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl Surf Sci 449:346–357

    CAS  Google Scholar 

  48. Huber S, Mardare CC, Kleber C, Hassel AW (2019) Structural, electrical, and optical effects of metal doping on ZnO thin films. Phys Status Solidi A 216(12):1800942

  49. Nejati K, Rezvani Z, Pakizevand R (2011) Synthesis of ZnO nanoparticles and investigation of the ionic template effect on their size and shape. Int Nano Lett 1(2):75–81

    CAS  Google Scholar 

  50. Bomila R, Suresh S, Srinivasan S (2019) Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications. J Mater Sci Mater Electron 30(1):582–592

    CAS  Google Scholar 

  51. Alam SN et al (2012) SEM, EDX & XRD of zinc oxide nanostructures synthesized by zinc oxidation. Microsc Anal 26(4):11–14

    Google Scholar 

  52. Rodnyi PA, Khodyuk IV (2011) Optical and luminescence properties of zinc oxide. Opt Spectrosc 111(5):776–785

    CAS  Google Scholar 

  53. Deraz NM, Alarifi A (2012) Fabrication and characterization of pure and doped Zn/Fe nanocomposites. Int J Electrochem Sci 7:3809–3816

    CAS  Google Scholar 

  54. Prakash T, Neri G, Bonavita A, Kumar ER, Gnanamoorthi K (2015) Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. J Mater Sci Mater Electron 26(7):4913–4921

  55. Singh A, Singh NB, Afzal S, Singh T, Hussain I (2018) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci 53(1):185–201

    CAS  Google Scholar 

  56. Güler SH, Evin E (2016) Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik. 127:3187–3191

    Google Scholar 

  57. Caglar Y, Caglar M, Ilican S (2018) XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes. Optik 164:424–432

    CAS  Google Scholar 

  58. Chai HY, Lam SM, Sin JC (2019) Green synthesis of magnetic Fe-doped ZnO nanoparticles via Hibiscus rosa-sinensis leaf extracts for boosted photocatalytic, antibacterial and antifungal activities. Mater Lett 242:103–106

    CAS  Google Scholar 

  59. Ma Y, Choi TW, Cheung SH, Cheng Y, Xu X, Xie YM et al (2019) Charge transfer-induced photoluminescence in ZnO nanoparticles. Nanoscale 11(18):8736–8743

    CAS  Google Scholar 

  60. Marvinney CE, Shen X, McBride JR, Critchlow D, Li Z, Mayo DC et al (2018) Effect of material structure on photoluminescence of ZnO/MgO core-shell nanowires. ChemNanoMat 4(3):291–300

    CAS  Google Scholar 

  61. Shamhari NM, Wee BS, Chin SF, Kok KY (2018) Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chim Slov 65(3):578–585

    CAS  Google Scholar 

  62. Sett A, Mukhopadhyay AK, Mondal M, Majumder S, Bhattacharyya TK (2018) Tuning surface defects of mesoporous ZnO nanorods for high-speed humidity sensing application. 018 IEEE SENSORS, New Delhi, pp 1–4. https://doi.org/10.1109/ICSENS.2018.8589790

  63. Leofanti G, Padovan M, Tozzola G, Venturelli BJCT (1998) Surface area and pore texture of catalysts. Catalysis Today 41(1–3):207–219

  64. Ji W, Li L, Song W, Wang X, Zhao B, Ozaki Y (2019) Enhanced Raman scattering by ZnO superstructures: synergistic effect of charge transfer and Mie resonances. Angew Chem Int Ed

  65. Praveena R, Sameera VS, Mohiddon MA, Krishna MG (2019) Surface plasmon resonance, photoluminescence, and surface-enhanced Raman scattering behavior of Ag/ZnO, ZnO/Ag and ZnO/Ag/ZnO thin films. Phys B Condens Matter 555:118–124

    CAS  Google Scholar 

  66. Suresh S, Karthikeyan S (2016) Optical, magnetic and photocatalytic properties of magnetically separable Fe3O4 - doped ZnO and pristine ZnO nanospheres. J Iran Chem Soc 13(11):2049–2057

    CAS  Google Scholar 

  67. Aljawfi RN, Rahman F, Batoo KM (2013) Surface defect mediated magnetic interactions and ferromagnetism in Cr/Co Co-doped ZnO nanoparticles. J Magn Magn Mater 332:130

    CAS  Google Scholar 

  68. Raja A, Ashokkumar S, Marthandam RP, Jayachandiran J, Khatiwada CP, Kaviyarasu K et al (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B Biol 181:53–58

    CAS  Google Scholar 

  69. Zare M, Namratha K, Alghamdi S, Mohammad YHE, Hezam A, Zare M et al (2019) Novel green biomimetic approach for the synthesis of ZnO-Ag nanocomposite; antimicrobial activity against food-borne pathogen, biocompatibility, and solar photocatalysis. Sci Rep 9(1):8303

    Google Scholar 

  70. Kumari N, Kumari P, Jha AK, Prasad K (2018) Enhanced antimicrobial activity in biosynthesized ZnO nanoparticles. In AIP Conference Proceedings 1953:030054. https://doi.org/10.1063/1.5032389

  71. Ibănescu M, Muşat V, Textor T, Badilita V, Mahltig B (2014) Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics. J Alloys Compd 610:244–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samreen Heena Khan or Bhawana Pathak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.H., Pathak, B. & Fulekar, M.H. A study on the influence of metal (Fe, Bi, and Ag) doping on structural, optical, and antimicrobial activity of ZnO nanostructures. Adv Compos Hybrid Mater 3, 551–569 (2020). https://doi.org/10.1007/s42114-020-00174-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00174-0

Keywords

Navigation