Skip to main content
Log in

Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The present work describes the fabrication of superhydrophobic and superoleophilic reduced graphene oxide-coated cotton (rGO@cotton) by a facile one-step hydrothermal used method for oil-water separation. Results from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) analysis show the formation of a composite structure with the presence of an ultrathin coating of rGO on the cotton fibers. The contact angle (CA) between a static water droplet and the rGO@cotton surface in air was measured ~ 162.9°, which suggests the formation of a superhydrophobic surface on the synthesized product. Moreover, the rGO@cotton showed excellent absorption capacity for oils where 1 g of rGO@cotton was able to remove ~ 30–40 g of various oils in the first cycle from oil-water mixtures. The flexible rGO@cotton was reusable and demonstrated oil retention up to ~ 35–50% at the tenth cycle using simple sorption-mechanical squeezing test. Overall, the present work identifies that the rGO@cotton is an efficient absorbent for effective separation of oil from oil-water mixtures.

Oil-water separation by reduced graphene oxide modified cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chu Z, Feng Y, Seeger S (2015) Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials. Angew Chem Int Ed 54:2328. https://doi.org/10.1002/anie.201405785

  2. Ma Q, Cheng H, Fane AG, Wang R, Zhang H (2016) Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small 12:2186. https://doi.org/10.1002/smll.201503685

  3. Chen P-C, Xu Z-K (2013) Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation. Sci Rep 3:2776. https://doi.org/10.1038/srep02776

  4. Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025-58. https://doi.org/10.1039/C7TA02070H

  5. Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil-water separation. 3:1025. https://doi.org/10.1038/ncomms2027

  6. Liu F, Ma M, Zang D, Gao Z, Wang C (2014) Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation. Carbohydr Polym 103:480. ​https://doi.org/10.1016/j.carbpol.2013.12.022

  7. Li R, Chen C, Li J, Xu L, Xiao G, Yan D (2014) A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. J Mater Chem A 2:3057. https://doi.org/10.1039/C3TA14262K

  8. Zhu Q, Pan Q, Liu F (2011) Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges. J Phys Chem C 115:17464. https://doi.org/10.1021/jp2043027

  9. Gupta S, Tai N-H (2016) Carbon materials as oil sorbents: a review on the synthesis and performance. J Mater Chem A 4:1550. https://doi.org/10.1039/C5TA08321D

  10. Inagaki M, Konno H, Toyoda M, Moriya K, Kihara T (2000) Sorption and recovery of heavy oils by using exfoliated graphite Part II: Recovery of heavy oil and recycling of exfoliated graphite. Desalination 128:213. https://doi.org/10.1016/S0011-9164(00)00035-7

  11. Li H, Zhao X, Wu P, Zhang S, Geng B (2016) Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer. J Mater Sci 51:3211. https://doi.org/10.1007/s10853-015-9632-6

  12. Yu Y, Wu X, Fang J (2015) Superhydrophobic and superoleophilic “sponge-like” aerogels for oil/water separation. J Mater Sci 50:5115. ​https://doi.org/10.1007/s1085

  13. Wang Y, Liu X, Lian M et al (2017) Continuous fabrication of polymer microfiber bundles with interconnected microchannels for oil/water separation. Appl Mater Today 9:77. ​https://doi.org/10.1016/j.apmt.2017.05.007

  14. Dunderdale GJ, Urata C, Sato T, England MW, Hozumi A (2015) Continuous, high-speed, and efficient oil/water separation using meshes with antagonistic wetting properties. ACS Appl Mater Interfaces 7:18915. https://doi.org/10.1021/acsami.5b06207

  15. Yin K, Chu D, Dong X, Wang C, Duan J-A, He J (2017) Femtosecond laser-induced robust periodic nanoripple structured mesh for highly efficient oil-water separation. Nano 9:14229. https://​doi.org/10.1039/C7NR04582D

  16. Bi H, Yin Z, Cao X et al (2013) Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv Mater 25:5916. https://doi.org/​10.1002/adma.201302435

  17. Liu Q, Patel AA, Liu L (2014) Superhydrophilic and underwater superoleophobic poly (sulfobetaine methacrylate)-grafted glass fiber filters for oil-water separation. ACS Appl Mater Interfaces 6:8996. https://doi.org/10.1021/am502302g

  18. Gui X, Wei J, Wang K et al (2010) Carbon Nanotube Sponges. Adv Mater 22:617. https://doi.org/10.1002/adma.200902986

  19. Sansotera M, Navarrini W, Resnati G et al (2010) Preparation and characterization of superhydrophobic conductive fluorinated carbon blacks. Carbon 48:4382. https://doi.org/10.1016/j.carbon.2010.07.052

  20. Zhao M, Liu P (2009) Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder. Desalination 249:331. https://doi.org/10.1016/j.desal.2009.01.037

  21. Ren H, Shi X, Zhu J, Zhang Y, Bi Y, Zhang L (2016) Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J Mater Sci 51:6419. https://​doi.org/10.1007/s10853-016-9939-y

  22. Araby S, Qiu A, Wang R, Zhao Z, Wang C-H, Ma J (2016) Aerogels based on carbon nanomaterials. J Mater Sci 51:9157. ​https://doi.org/10.1007/s10853-016-0141-z

  23. Sun H, Zhu Z, Liang W et al (2014) Reduced graphene oxide-coated cotton for selective absorption of organic solvents and oils from water. RSC Adv 4:30587. https://doi.org/10.1039/C4RA03208J

  24. Xiao N, Zhou Y, Ling Z, Qiu J (2013) Synthesis of a carbon nanofiber/carbon foam composite from coal liquefaction residue for the separation of oil and water. Carbon 59:530. ​https://doi.org/10.1016/j.carbon.2013.03.051

  25. Sun Z, James DK, Tour JM (2011) Graphene chemistry: synthesis and manipulation. J Phys Chem Lett 2:2425. ​https://doi.org/10.1021/jz201000a

  26. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178. https://doi.org/10.1016/j.pmatsci.2011.03.003

  27. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu W-W, Voon CH (2017) Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng 184:469. https://doi.org/10.1016/j.proeng.2017.04.118

  28. Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

  29. Tang Z, Zhang Z, Han Z, Shen S, Li J, Yang J (2016)  One-step synthesis of hydrophobic-reduced graphene oxide and its oil/water separation performance. J Mater Sci 51:8791. https://doi.org/10.1007/s10853-016-9937-0

  30. Fragouli D, Athanassiou A (2017) Graphene heaters absorb faster. Nature Nano 12:406. https://​doi.org/10.1038/nnano.2017.63

  31. Liu N, Zhang M, Zhang W et al (2015) Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. J Mater Chem A 3:20113. ​https://doi.org/10.1039/C5TA06314K

  32. Liu Y, Ma J, Wu T et al (2013) Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl Mater Interfaces 5:10018. ​https://doi.org/10.1021/am4024252

  33. Ge B, Zhang Z, Zhu X, Men X, Zhou X, Xue Q (2014) A graphene coated cotton for oil/water separation. Compos Sci Technol 102:100.​ https://doi.org/10.1016/j.compscitech.2014.07.020

  34. Upadhyay RK, Dubey A, Waghmare PR, Priyadarshini R, Roy SS (2016) Multifunctional reduced graphene oxide coated cloths for oil/water separation and antibacterial application. RSC Adv 6:62760. ​https://doi.org/10.1039/C6RA08079K

  35. Ge J, Shi L-A, Wang Y-C et al (2017) Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat Nanotechnol 12:434. https://doi.org/10.1038/nnano.2017.33

  36. Periasamy AP, Wu W-P, Ravindranath R, Roy P, Lin G-L, Chang H-T (2017) Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery. Mar Pollut Bull 114:888. https://doi.org/10.1016/j.marpolbul.2016.11.005

  37. Luo Y, Jiang S, Xiao Q, Chen C, Li B (2017) Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation. Sci Rep 7:7162. ​https://doi.org/10.1038/s41598-017-07583-0

  38. Niu Z, Chen J, Hng HH, Ma J, Chen X (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24:4144. ​https://doi.org/10.1002/adma.201200197

  39. Zhang M, Wang C, Wang S, Li J (2013) Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route. Carbohydr Polym 97:59.  https://doi.org/10.1016/j.carbpol.2012.08.118

  40. Zhou X, Zhang Z, Xu X et al (2013) Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl Mater Interfaces 5:7208. ​https://doi.org/10.1021/am4015346

  41. Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2:58. ​https://doi.org/10.1016/j.proeng.2017.04.118

  42. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994. https://doi.org/10.1016/j.carbon.2008.08.013

  43. Lamour G, Hamraoui A, Buvailo A et al (2010) Contact angle measurements using a simplified experimental setup. J Chem Educ 87:1403. ​https://doi.org/10.1021/ed100468u

  44. Abdolhosseinzadeh S, Asgharzadeh H, Seop Kim H (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5:10160. https://doi.org/10.1038/srep10160

  45. Hoai NT, Sang NN, Hoang TD (2017) Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal. Mater Sci Eng B 216:10. ​https://doi.org/10.1016/j.mseb.2016.06.007

  46. Leng B, Shao Z, de With G, Ming W (2009)  Superoleophobic cotton textiles. Langmuir 25:2456. ​https://doi.org/10.1021/la8031144

  47. Zhu H, Yang S, Chen D, et al (2016) A Robust Absorbent Material Based on Light-Responsive Superhydrophobic Melamine Sponge for Oil Recovery. Adv Mater Interfaces 3:1500683. https://doi.org/10.1002/admi.201500683

  48. Richard-Campisi L, Bourbigot S, Le Bras M, Delobel R (1996) Thermal behaviour of cotton-modacrylic fibre blends: kinetic study using the invariant kinetic parameters method. Thermochim Acta 275:37. ​https://doi.org/10.1016/0040-6031(95)02729-7

  49. Shalaby A, Nihtianova D, Markov P, Staneva A, Iordanova R, Dimitriev Y (2015) Structural analysis of reduced graphene oxide by transmission electron microscopy. Bulg Chem Commun 47:291

    Google Scholar 

  50. Bong J, Lim T, Seo K et al (2015) Dynamic graphene filters for selective gas-water-oil separation. Sci Rep 5:14321. ​https://doi.org/10.1038/srep14321

  51. Nakajima A, Hashimoto K, Watanabe T (2001) Recent studies on super-hydrophobic films. Monatshefte für Chemie Chem Month 132:31. https://doi.org/10.1007/s007060170142

  52. Kubiak K, Wilson M, Mathia T, Carval P (2011) Wettability versus roughness of engineering surfaces. Wear 271:523. ​https://doi.org/10.1016/j.wear.2010.03.029

  53. Nosonovsky M, Bhushan B (2012) Lotus Versus Rose: Biomimetic Surface Effects. Green Tribology: Biomimetics, Energy Conservation and Sustainability. Green Tribology Springer, Berlin, pp​ 25–40.

  54. Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078. ​https://doi.org/10.1021/la901402f

  55. Feng C, Yi Z, She F et al (2016) Superhydrophobic and superoleophilic micro-wrinkled reduced graphene oxide as a highly portable and recyclable oil sorbent. ACS Appl Mater Interfaces 8:9977. ​https://doi.org/10.1021/acsami.6b01648

  56. Meier GH (2014) Thermodynamics of Surfaces and Interfaces: Concepts in Inorganic Materials. Cambridge University Press and the Materials Research Society 251 pages, ISBN 9780521879088. MRS Bulletin;40:371–2. Epub 04/01.

  57. Yaneva Z, Koumanova B (2006) Comparative modelling of mono-and dinitrophenols sorption on yellow bentonite from aqueous solutions. J Colloid Interface Sci 293:303. ​https://doi.org/10.1016/j.jcis.2005.06.069

  58. Gui X, Li H, Wang K et al (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798. ​https://doi.org/10.1016/j.actamat.2011.04.022

  59. Hu H, Zhao Z, Gogotsi Y, Qiu J (2014) Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett 1:214. https://doi.org/10.1021/ez500021w

  60. Park JH, Aluru N (2009) Temperature-dependent wettability on a titanium dioxide surface. Molecular. Simulation 35:31.​ https://doi.org/10.1080/08927020802398884

  61. Li S, Huang J, Ge M et al (2015) Robust Flower-Like TiO2@Cotton Fabrics with Special Wettability for Effective Self-Cleaning and Versatile Oil/Water Separation. Adv Mater Interfaces 2:1500220. https://doi.org/10.1002/admi.201500220

  62. Hu X, Yu Y, Zhou J et al (2015) The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. J Membr Sci 476:200. ​https://doi.org/10.1016/j.memsci.2014.11.043

  63. Cortese B, Caschera D, Federici F, Ingo GM, Gigli G (2014) Superhydrophobic fabrics for oil-water separation through a diamond-like carbon (DLC) coating. J Mater Chem A 2:6781. ​https://doi.org/10.1039/C4TA00450G

  64. Zang D, Liu F, Zhang M, Niu X, Gao Z, Wang C (2015) Superhydrophobic coating on fiberglass cloth for selective removal of oil from water. Chem Eng J 262:210. ​https://doi.org/10.1016/j.cej.2014.09.082

  65. Zhu T, Li S, Huang J, Mihailiasa M, Lai Y (2017) Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation. Mater Des 134:342. https://doi.org/10.1016/j.matdes.2017.08.071

Download references

Acknowledgements

Authors gratefully acknowledge the partial financial support from the Department of Science and Technology, Science and Engineering Research Board (DST-SERB) (grant number ECR/2016/000959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Saha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• rGO@cotton-based superhydrophobic material is developed by hydrothermal method.

• A composite structure with an ultrathin coating of rGO on cotton fibers is formed.

• The contact angle (CA) measurement between a static water droplet and rGO@cotton surface in air shows CA ~ 162.9, which suggests the superhydrophobicity of the material.

• The rGO@cotton can remove ~50–60 times various oils of its weight by simple sorption-mechanical squeezing test.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashairya, L., Rout, M. & Saha, P. Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation. Adv Compos Hybrid Mater 1, 135–148 (2018). https://doi.org/10.1007/s42114-017-0019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0019-9

Keywords

Navigation