Skip to main content
Log in

Magnetic negative permittivity with dielectric resonance in random Fe3O4@graphene-phenolic resin composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Magnetic Fe3O4@graphene-phenolic resin (FGR-PR) composites with negative permittivity were prepared by chemical coprecipitation and pressing method. Alternating current conductivity, permittivity, and permeability of the FGR-PR composites were investigated. An obvious percolation phenomenon was observed with the increase of FGR content from 84 to 91 vol%. Two types of negative permittivity attributed to the Lorentz and the Drude model, respectively, were observed in the composites. Due to the magnetocrystalline anisotropy and saturation magnetization, the real permeability enhanced from 1.17 to 4.1 with the increasing FGR content from 6 to 98 vol%. In addition, the frequency dispersion of permeability was attributed to the domain wall and the gyromagnetic spin resonance. The magnetic loss decreased firstly in the low frequency, attributing to the natural resonance, and then increased in the high frequency from the eddy current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  2. Lee C, Wei X, Kysar J, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  3. Stankovich S, Dikin D, Piner R, Kohlhaas K, Kleinhammes JY, Wu Y, Nguyen S, Ruoff R (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  4. Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D, Jaszczak J, Geim A (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602

    Article  Google Scholar 

  5. Zhang X, Huang Y, Liu P (2016) Enhanced electromagnetic wave absorption properties of poly (3,4-ethylenedioxythiophene) nanofiber-decorated graphene sheets by non-covalent interactions. Nano-Micro Lett 8:131–136

    Article  Google Scholar 

  6. Chen C, Gu Y, Wang S, Zhang Z, Li M, Zhang Z (2017) Fabrication and characterization of structural/dielectric three-phase composite: continuous basalt fiber reinforced epoxy resin modified with graphene nanoplates. Compos Part A-Appl S 94:199–208

    Article  Google Scholar 

  7. Zhu J, Wei S, Haldolaarachchige N, He J, Young D, Guo Z (2012) Very large magnetoresistive graphene disk with negative permittivity. Nano 4:152–156

    Google Scholar 

  8. Zhu J, Luo Z, Wu S, Haldolaarachchige N, Young D, Wei S, Guo Z (2012) Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. J Mater Chem 22:835–844

    Article  Google Scholar 

  9. Zhao W, Kong J, Liu H, Zhuang Q, Gu J, Guo Z (2016) Ultra-high thermally conductive and rapid heat responsive poly (benzobisoxazole) nanocomposites with self-aligned graphene. Nano 8:19984–19993

    Google Scholar 

  10. Sun K, Fan R, Yin Y, Guo J, Li X, Lei Y, An L, Cheng C, Guo Z (2017) Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J Phys Chem C 121:7564–7571

    Article  Google Scholar 

  11. Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z (2017) Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J Mater Chem C 5:73–83

    Article  Google Scholar 

  12. Gong T, Liu M, Liu H, Peng S, Li T, Bao R, Yang W, Xie B, Yang M, Guo Z (2017) Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers. Polymer 110:1–11

    Article  Google Scholar 

  13. Cao X, Wei X, Li G, Hu C, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z (2017) Strain sensing behaviors of epoxy nanocomposites with carbon nanotubes under cyclic deformation. Polymer 112:1–9

    Article  Google Scholar 

  14. Bian L, Liu P, Li G (2016) Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies. Superlattice Microst 98:522–534

    Article  Google Scholar 

  15. Liu H, Ren G, Gao Y, Zhu B, Lian Y, Wu B, Jian S (2016) Ultracompact electro-optical logic gates based on graphene–silica metamaterial. J Nanophotonics 10:026004–026004

    Article  Google Scholar 

  16. Saber M, Ahmed A, Sagor R (2017) Performance analysis of a differential evolution algorithm in modeling parameter extraction of optical material. SILICON 9:723–731

    Article  Google Scholar 

  17. Wu Y, Wang Z, Liu X et al (2017) Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl Mater Inter 9:9059–9069

    Article  Google Scholar 

  18. Barzegar-Parizi S (2016) Study of backward waves in multilayered structures composed of graphene micro-ribbons. J Appl Phys 119:193105

    Article  Google Scholar 

  19. Yuchang Q, Qinlong W, Fa L et al (2016) Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J Mater Chem C 4:4853–4862

    Article  Google Scholar 

  20. Wu H, Yin R, Qian L, Zhang Z (2017) Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater Design 117:18–23

    Article  Google Scholar 

  21. Wu H, Qi Y, Wang Z, Zhao W, Li X, Qian L (2017) Low percolation threshold in flexible graphene/acrylic polyurethane composites with tunable negative permittivity. Compos Sci Technol 151:79–84

    Article  Google Scholar 

  22. Wu H, Yin R, Zhang Y, Wang Z, Xie P, Qian L (2017) Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites. J Phys Chem C 121:12037–12045

    Article  Google Scholar 

  23. Gu H, Guo J, Wei H, Guo S, Liu J, Huang Y, Khan M, Wang X, Young D, Wei S, Guo Z (2015) Strengthened magnetoresistive epoxy nanocomposite papers derived from synergistic nanomagnetite-carbon nanofiber nanohybrids. Adv Mater 27:6277–6282

    Article  Google Scholar 

  24. Grünberg P (2008) Nobel lecture: from spin waves to giant magnetoresistance and beyond. Rev Mod Phys 80:1531

    Article  Google Scholar 

  25. Gallagher W, Parkin S (2006) Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip. IBM J Res Dev 50:5–23

    Article  Google Scholar 

  26. Freitas R, Wilcke W (2008) Storage-class memory: the next storage system technology. IBM J Res Dev 52:439–447

    Article  Google Scholar 

  27. Graham D, Ferreir H, Freitas P (2004) Magnetoresistive-based biosensors and biochips. Trends Biotechnol 22:455–462

    Article  Google Scholar 

  28. Hajesmaeili H, Zamani M, Zandi M (2017) Bi-gyrotropic single-negative magnetic materials in the presence of longitudinal magnetization: a transfer matrix approach. Photonic Nanostruct 24:69–75

    Article  Google Scholar 

  29. Zvezdin A, Kotov V (1992) Modern magnetooptics and magnetooptical materials. Institute of Physics Publishing, Bristol

    Google Scholar 

  30. Visnovsky S (2006) Optics in magnetic multilayers and nanostructures. Taylor and Francis Group, Abingdon

    Google Scholar 

  31. Yuan P, Liu D, Fan M, Yang D, Zhu R, Ge F, Zhu J, He H (2010) Removal of hexavalent chromium [Cr (VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J Hazard Mater 173:614–621

    Article  Google Scholar 

  32. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  Google Scholar 

  33. Dubin S, Gilje S, Wang K, Tung V, Cha K, Hall A, Farrar J, Varshneya R, Yang Y, Kaner R (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4:3845–3852

    Article  Google Scholar 

  34. Hsiao M, Liao S, Yen M, Teng C, Lee S, Pu N, Wang C, Sung Y, Ger M, Ma C, Hsiao M (2010) Preparation and properties of a graphene reinforced nanocomposite conducting plate. J Mater Chem 20:8496–8505

    Article  Google Scholar 

  35. Dyre J, Schroder T (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72:873

    Article  Google Scholar 

  36. He F, Lau S, Chan H, Fan J (2009) High dielectric permittivity and low percolation threshold in nanocomposites based on poly (vinylidene fluoride) and exfoliated graphite nanoplates. Adv Mater 21:710–715

    Article  Google Scholar 

  37. Yao X, Kou X, Qiu J (2016) Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability. Carbon 107:261–267

    Article  Google Scholar 

  38. Cheng C, Fan R, Ren Y, Ding T, Qain L, Guo J, Li X, An L, Lei Y, Yin Y, Guo Z (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nano 9:5779–5787

    Google Scholar 

  39. Tsutaoka T, Massango H, Kasagi T, Yamamoto S, Hatakeyama K (2016) Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Appl Phys Lett 108:191904

    Article  Google Scholar 

  40. Dressel M, Gruener G (2002) Electrodynamics of solids: optical properties of electrons in matter. Cambridge University Press, New York, p 475

  41. Li B, Sui G, Zhong W (2009) Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv Mater 21:4176–4180

    Article  Google Scholar 

  42. Yan H, Zhao C, Wang K et al (2013) Negative dielectric constant manifested by static electricity. Appl Phys Lett 102:062904

    Article  Google Scholar 

  43. Yao X, Kou X, Qiu J et al (2016) Generation mechanism of negative dielectric properties of metallic oxide crystals/polyaniline composites. J Phys Chem C 120:4937–4944

    Article  Google Scholar 

  44. Zhang D, Wang P, Murakami R, Song X (2010) Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films. Appl Phys Lett 96:233114

    Article  Google Scholar 

  45. Chang J, Liang G, Gu A, Cai S, Yuan L (2012) The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing. Carbon 50:689–698

    Article  Google Scholar 

  46. Wang B, Liang G, Jiao Y, Gu A, Liu L, Yuan L, Zhang W (2013) Two-layer materials of polyethylene and a carbon nanotube/cyanate ester composite with high dielectric constant and extremely low dielectric loss. Carbon 54:224–233

    Article  Google Scholar 

  47. Wen B, Cao M, Hou Z, Song W, Zhang L (2013) Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65:124

    Article  Google Scholar 

  48. Han M, Yin X, Wu H, Hou Z, Song C (2016) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl Mater Inter 8:21011

    Article  Google Scholar 

  49. Zhang X, Yan X, He Q, Wei H, Long J (2015) Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl Mater Inter 7:6125–6138

    Article  Google Scholar 

  50. Shi Z, Chen S, Sun K, Wang X, Fan R, Wang X (2014) Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl Phys Lett 104:252908

    Article  Google Scholar 

  51. Bai Y, Zhang W, Qiao L, Zhou J (2012) Low-fired Y-type hexagonal ferrite for hyper frequency applications. J Adv Ceram 1:100–109

    Article  Google Scholar 

  52. Tsutaoka T, Kasagi T, Yamamoto S, Kenichi H (2015) Double negative electromagnetic property of granular composite materials in the microwave range. J Magn Magn Mater 383:139–143

    Article  Google Scholar 

  53. Tsutaoka T, Fukuyama K, Kinoshita H, Kasagi T, Yamamoto S, Hatakeyama K (2013) Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl Phys Lett 103:261906

    Article  Google Scholar 

  54. Wang T, Wang H, Chi X, Li R, Wang J (2014) Synthesis and microwave absorption properties of Fe–C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon 74:312–318

    Article  Google Scholar 

  55. Liu X, Chen Y, Hao C, Ye J, Yu R, Huang D (2016) Graphene-enhanced microwave absorption properties of Fe3O4/SiO2 nanorods. Compos Part A- Appl S 89:40–46

    Article  Google Scholar 

  56. Alippi C (2016) A unique timely moment for embedding intelligence in applications. CAAI Trans Intel Tech 1:1–3

    Article  Google Scholar 

  57. Jin H, Chen Q, Chen Z, Hu Y, Zhang J (2016) Multi-LeapMotion sensor based demonstration for robotic refine tabletop object manipulation task. CAAI Trans Intel Tech 1:104–113

    Article  Google Scholar 

  58. Zhang X, Gao H, Guo M, Li G, Liu Y, Li D (2016) A study on key technologies of unmanned driving. CAAI Trans Intel Tech 1:4–13

    Article  Google Scholar 

  59. Padhy S, Panda S (2017) A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles. CAAI Trans Intel Tech 2:12–25

    Article  Google Scholar 

  60. Xiang X, Pan F, Li Y (2017) A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Adv Compos Hybrid Mater 1–26. https://doi.org/10.1007/s42114-017-0001-6

  61. Yu G, Lu Y, Guo J, Patel M, et al (2017) Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv Compos Hybrid Mater 1–23. https://doi.org/10.1007/s42114-017-0004-3

  62. Aqeel S, Huang Z, Walton J, et al (2017) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Comp Hybrid Mater 1–8. https://doi.org/10.1007/s42114-017-0002-5

Download references

Funding

This work was supported by the National Nature Science Foundation of China (no. 51672162) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (no. KF201606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhang, Y., Yin, R. et al. Magnetic negative permittivity with dielectric resonance in random Fe3O4@graphene-phenolic resin composites. Adv Compos Hybrid Mater 1, 168–176 (2018). https://doi.org/10.1007/s42114-017-0014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0014-1

Keywords

Navigation