Skip to main content
Log in

Numerical analysis of GFRP-reinforced flat slab–column edge connection subjected to gravity and lateral loads

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, a numerical study was performed to investigate the behavior of glass fiber reinforced polymer (GFRP) concrete slab–column edge connections under monotonically applied gravity and lateral loads. The effects of the size of the spandrel beam, column rectangularity, column shape, and extension distance of the slab beyond the column have been examined. The nonlinear finite element analysis was performed by ABAQUS and the accuracy of the numerical model was verified by experimental tests conducted by other researchers. Providing spandrel beams at the free edge and extending the slab section beyond the outer face of the column significantly enhanced the cracking and ultimate loads, and post-cracking stiffness of the connections. Providing a spandrel beam without an offset from the column centerline significantly increased (by about 64%) the ultimate shear capacity of the connection. However, constructing this beam with a 50 mm offset reduced the ultimate shear capacity increments to 51%. Increasing the rectangularity index of the column under the same punching shear perimeter length exhibited a slight reduction in ultimate load capacity. Extending the slab beyond the free edge slightly increased the strength of the connections, similar to the spandrel beam. Increasing the rectangularity of the column reduced the capacities of the connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

Any other relevant data related to this research work can be offered by the corresponding author upon request.

Abbreviations

FRP:

Fiber-reinforced polymer

GFRP:

Glass fiber reinforced polymer

ACI:

American concrete institute

FE:

Finite element

CDP:

Concrete damaged plasticity model

\(\rho\) :

Reinforcement ratio

\({f}_{\mathrm{c}}^{{\prime}}\) :

Peak uniaxial compressive strength of concrete

\({f}_{\mathrm{t}}^{{\prime}}\) :

Peak uniaxial tensile strength of concrete

\({f}_{\mathrm{fVb}}\) :

Bent ultimate tensile strength according to the B-5 test for GFRP bars

\({f}_{\mathrm{y}}\) :

Yield stress of steel reinforcements

\({\varepsilon }_{\mathrm{y}}\) :

Steel yield strain

\(\beta\) :

Column rectangularity index

\(k\) :

The ratio of minimum column dimension to slab effective depth

\({\sigma }_{\mathrm{c}}\) :

Concrete compressive strength

\({\sigma }_{\mathrm{ct}}\) :

Concrete tensile strength

\({\varepsilon }_{\mathrm{c}}\) :

Concrete compressive strain

\({\varepsilon }_{\mathrm{o}}\) :

Strain corresponding to the peak stress

\({E}_{\mathrm{co}}\) :

Initial modulus of elasticity of concrete

\({E}_{\mathrm{ct}}\) :

Modified secant modulus of elasticity of concrete

W :

Crack width

\({G}_{\mathrm{f}}\) :

Fracture energy

\({G}_{\mathrm{fo}}\) :

The base value of fracture energy

\({\alpha }_{\mathrm{f}}\) :

Coefficient to estimate the maximum crack width at zero tensile stress

\(\Delta\) :

Deflection

References

  • ACI Committee 440. (2015). ACI440.1R-15 guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars. American Concrete Institute.

  • Alam, A. K. M. J., Amanat, K. M., & Seraj, S. M. (2009). An experimental study on punching shear behavior of concrete slabs. Advances in Structural Engineering, 12(2), 257–265.

    Article  Google Scholar 

  • Behnam, H., Kuang, J. S., & Samali, B. (2018). Parametric finite element analysis of RC wide beam-column connections. Computers and Structures, 205, 28–44.

    Article  Google Scholar 

  • CEB-FIB. (1990). CEB-FIB, M.C Design code. By Thomas Telford, London.

  • Dulude, C., Ahmed, E., & Brahimbenmokraneusherbrookeca, B. B. (2011). Testing of large-scale two-way concrete slabs reinforced with GFRP bars. In CICE 2010—The 5th international conference on FRP composites in civil engineering, Beijing, China.

  • EI-Sheikh, A. (1997). Effect of spandrel beams on strength and behavior of column-slab connections. Magazine of Concrete Research, 180, 221–230.

    Article  Google Scholar 

  • Erdogan, H., Binici, B., & Ozcebe, G. (2011). Effect of column rectangularity on CFRP-strengthened RC flat plates. Magazine of Concrete Research, 63(7), 511–525.

    Article  Google Scholar 

  • Falamaki, M., & Loo, Y. C. (1992). Punching shear tests of half-scale reinforced concrete flat-plate models with spandrel beams. ACI Structural Journal, 89(3), 263–271.

    Google Scholar 

  • Genikomsou, A. S., & Polak, M. A. (2015). Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 98, 38–48.

    Article  Google Scholar 

  • Genikomsou, A. S., & Anna Polak, M. (2017). Effect of openings on punching shear strength of reinforced concrete slabs-finite element investigation. ACI Structural Journal, 114(5), 1249–1262.

    Article  Google Scholar 

  • Hassan, M., Fam, A., Benmokrane, B., & Ferrier, E. (2017). Effect of column size and reinforcement ratio on shear strength of glass fiber-reinforced polymer reinforced concrete two-way slabs. ACI Structural Journal, 114(4), 937–950.

    Article  Google Scholar 

  • Hawkins, B. N. M., Fallsen, H. B., & Hinojosa, R. C. (1971). Influence of column rectangularity on the behavior of flat plate structures. ACI Special Publication, 30, 127–146.

    Google Scholar 

  • Loo, Y.-C., & Guan, H. (1997). Cracking and punching shear failure analysis of RC flat plates. Journal of Structural Engineering, 123(10), 1321–1330.

    Article  Google Scholar 

  • Masterson, D. M., & Long, A. E. (1974). The punching strength of slabs, a flexural approach using finite elements. ACI Special Publication, SP-042, 747–768.

  • Milligan, G. J., Polak, M. A., & Zurell, C. (2020). Finite element analysis of punching shear behavior of concrete slabs supported on rectangular columns. Engineering Structures, 224, 111189.

    Article  Google Scholar 

  • Milligan, G. J., Polak, M. A., & Zurell, C. (2021). Impact of column rectangularity on punching shear strength: Code predictions versus finite element analysis. Journal of Structural Engineering, 147(2), 04020331.

    Article  Google Scholar 

  • Oliveira, D. R. C., Regan, P. E., & Melo, G. S. S. A. (2004). Punching resistance of RC slabs with rectangular columns. Magazine of Concrete Research, 56(3), 123–138.

    Article  Google Scholar 

  • Rangan, B. V., & Hall, A. S. (1983). Forces in the vicinity of edge columns in flat plate floors. Magazine of Concrete Research, 35(122), 19–26.

    Article  Google Scholar 

  • Sagaseta, J., Muttoni, A., Ruiz, M. F., & Tassinari, L. (2011). Non-axis-symmetrical punching shear around internal columns of RC slabs without transverse reinforcement. Magazine of Concrete Research, 63(6), 441–457.

    Article  Google Scholar 

  • Sagaseta, J., Tassinari, L., Fernández Ruiz, M., & Muttoni, A. (2014). Punching of flat slabs supported on rectangular columns. Engineering Structures, 77, 17–33.

    Article  Google Scholar 

  • Salama, A. E., Hassan, M., & Benmokrane, B. (2019). Effectiveness of glass fiber-reinforced polymer stirrups as shear reinforcement in glass-fiber-reinforced polymer-reinforced concrete edge slab-column connections. ACI Structural Journal, 116(5), 97–112.

    Article  Google Scholar 

  • Salama, A. E., Hassan, M., & Benmokrane, B. (2020). Nonlinear finite-element analysis of glass fiber-reinforced polymer-reinforced concrete slab-column edge connections. ACI Structural Journal, 117(5), 217–231.

    Google Scholar 

  • Salama, A. E., Hassan, M., & Benmokrane, B. (2021). Punching-shear behavior of glass fiber-reinforced polymer-reinforced concrete edge column-slab connections: experimental and analytical investigations. ACI Structural Journal, 118(3), 147–160.

    Google Scholar 

  • Sherif, A. G., Emara, M. B., Ibrahim, A. H., & Magd, S. A. (2005). Effect of the column dimensions on the punching shear strength of edge column-slab connections. ACI Special Publication, 232, 175–192.

    Google Scholar 

  • Teng, S., Cheong, H. K., Kuang, K. L., & Geng, J. Z. (2004). Punching shear strength of slabs with openings and supported on rectangular columns. ACI Structural Journal, 101(5), 678–687.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the mining engineering department, Addis Ababa Science and Technology University for giving access to the high-performance computer laboratory.

Funding

The authors would like to acknowledge Addis Ababa Science and Technology University for partially funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temesgen Wondimu Aure.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demissie, G.A., Aure, T.W. Numerical analysis of GFRP-reinforced flat slab–column edge connection subjected to gravity and lateral loads. Asian J Civ Eng 23, 765–783 (2022). https://doi.org/10.1007/s42107-022-00456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-022-00456-6

Keywords

Navigation